Understanding the OAS/RNase L pathway during pathogenic viral infections
了解病原性病毒感染期间的 OAS/RNase L 途径
基本信息
- 批准号:10714902
- 负责人:
- 金额:$ 48.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAccelerationAntiviral ResponseAutoimmune DiseasesBiologyCell NucleusCell physiologyComplexCytoplasmCytoplasmic GranulesDengue InfectionDengue VirusDevelopmentDiseaseGene ExpressionImmuneInfluenza A virusInterferon Type IKnowledgeMalignant NeoplasmsMediatingMedicineMessenger RNAMolecularNerve DegenerationNuclearPathogenicityPathway interactionsProcessProductionProtein BiosynthesisRNARegulationResearchRibonucleasesRibonucleoproteinsRibosomesTranslationsViralViral GenesViral ProteinsVirusVirus Diseasescancer therapygene inductionimmunoregulationmRNA DecaymRNA Exportpathogenic virusprogramsresponsestress granulevirology
项目摘要
PROJECT SUMMARY
Ribonuclease L (RNase L) is a key component of the mammalian innate antiviral response. For decades, RNase
L was presumed to reduce viral protein synthesis by cleaving ribosomes to arrest translation. However, we and others
recently demonstrated that RNase L-cleaved ribosomes are translation-competent, and that pathogenic viruses can
synthesize proteins despite activating RNase L. These observations have revealed a significant gap in knowledge
regarding how RNase L functions and how viruses evade it. We have demonstrated that RNase L rapidly degrades nearly
all cellular mRNAs upon activation. This activity regulates three cellular processes that have expanded our understanding
of RNase L and that have elucidated how pathogenic viruses evade and potentially hijack RNase L functions. First,
RNase L reprograms translation to an antiviral state by degrading constitutively expressed cellular mRNAs while
sparing host mRNAs encoding antiviral proteins (e.g., type I interferons), which permits antiviral protein synthesis.
Importantly, the mRNAs encoded by several pathogenic viruses (e.g., dengue virus) similarly evade RNase L-mediated
mRNA decay, thus permitting viral protein synthesis. This observation has elucidated how pathogenic viruses synthesize
proteins despite activating RNase L. This application proposes to characterize the RNase L-mediated mRNA decay
pathway and determine how host and viral mRNAs evade it. Second, RNase L activation triggers the inhibition of nuclear
mRNA export. This is a critical antiviral mechanism that antagonizes influenza A virus protein synthesis, but it also
downregulates the expression of host antiviral proteins (e.g., type I interferons). Importantly, pathogenic viruses (e.g.,
dengue virus) activate this RNase L-dependent pathway, resulting in sequestration of host antiviral mRNAs in the
nucleus. This observation suggests that viruses potentially hijack this function of RNase L to limit host antiviral protein
production. This application aims to determine how RNase L inhibits mRNA export, the breadth of viruses it antagonizes,
how it impacts host antiviral gene expression during pathogenic viral infections. Third, RNase L regulates the assembly
of cytoplasmic antiviral ribonucleoprotein complexes. Specifically, RNase L inhibits the assembly of stress granules and
promotes the assembly of an alternative stress granule-like ribonucleoprotein complex termed RNase L-dependent body.
RNase L-dependent bodies are the predominant antiviral granule assembled in response to SARS-CoV-2 or dengue virus
infection, yet their function is completely unknown. This application aims to determine the function of antiviral stress
granules and RNase L-dependent bodies and to determine how their regulation by RNase L alters the antiviral response.
Understanding the mechanisms and functions of these cellular processes will advance our understanding of the
OAS/RNase L pathway, innate immune antiviral gene induction, and virology. Moreover, it will promote general
medicine by broadly characterizing fundamental cellular, molecular, and RNA biology that is relevant to non-infectious
diseases, including autoimmune diseases, neurodegeneration, and cancer. Lastly, the proposed research will support the
development of promising antiviral, immunomodulatory, and anticancer therapies based on RNase L biology.
项目摘要
核糖核酸酶L(RNase L)是哺乳动物先天性抗病毒反应的关键组分。几十年来,RNase
推测L通过切割核糖体以阻止翻译来减少病毒蛋白质合成。然而,我们和其他人
最近证明,RNase L切割的核糖体是有防御能力的,致病病毒可以
合成蛋白质,尽管激活RNase L。这些观察揭示了知识上的巨大差距
关于RNase L如何发挥作用以及病毒如何逃避它,我们已经证明RNase L几乎可以快速降解,
所有的细胞mRNA。这种活动调节三种细胞过程,
这些研究阐明了致病病毒如何逃避和潜在地劫持RNase L的功能。第一、
RNase L通过降解组成型表达的细胞mRNA将翻译重编程为抗病毒状态,
保留编码抗病毒蛋白的宿主mRNA(例如,I型干扰素),其允许抗病毒蛋白质合成。
重要的是,由几种致病病毒编码的mRNA(例如,登革病毒)同样逃避RNase L介导的
mRNA衰变,从而允许病毒蛋白质合成。这一观察阐明了致病病毒如何合成
蛋白质,尽管激活RNase L。本申请提出表征RNase L介导的mRNA衰变
第二,RNase L激活触发核转录抑制,
mRNA输出。这是一个关键的抗病毒机制,拮抗甲型流感病毒蛋白合成,但它也
下调宿主抗病毒蛋白的表达(例如,I型干扰素)。重要的是,致病性病毒(例如,
登革病毒)激活这种RNase L依赖性途径,导致宿主抗病毒mRNA被隔离在
原子核这一观察结果表明,病毒可能会劫持RNase L的这种功能,以限制宿主的抗病毒蛋白
生产该应用旨在确定RNase L如何抑制mRNA输出,其拮抗的病毒的广度,
在致病性病毒感染期间它如何影响宿主抗病毒基因表达。第三,RNase L调节组装
细胞质抗病毒核糖核蛋白复合物。具体而言,RNase L抑制应激颗粒的组装,
促进称为RNase L依赖体的替代应力颗粒样核糖核蛋白复合物的组装。
RNase L依赖体是SARS-CoV-2或登革病毒应答中组装的主要抗病毒颗粒
感染,但其功能完全未知。本申请旨在确定抗病毒应激的功能
颗粒和RNase L依赖性机构,并确定如何调节RNase L改变抗病毒反应。
了解这些细胞过程的机制和功能将促进我们对细胞周期的理解。
OAS/RNase L途径、先天免疫抗病毒基因诱导和病毒学。此外,它将促进一般
通过广泛表征与非感染性疾病相关的基本细胞、分子和RNA生物学,
疾病,包括自身免疫性疾病、神经变性和癌症。最后,拟议的研究将支持
基于RNase L生物学的有前景的抗病毒、免疫调节和抗癌疗法的开发。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
G3BP1-dependent condensation of translationally inactive viral RNAs antagonizes infection.
- DOI:10.1126/sciadv.adk8152
- 发表时间:2024-02-02
- 期刊:
- 影响因子:13.6
- 作者:Burke, James M.;Ratnayake, Oshani C.;Watkins, J. Monty;Perera, Rushika;Parker, Roy
- 通讯作者:Parker, Roy
RNase L-induced bodies sequester subgenomic flavivirus RNAs and re-establish host RNA decay.
RNase L 诱导的体隔离亚基因组黄病毒 RNA 并重新建立宿主 RNA 衰变。
- DOI:10.1101/2024.03.25.586660
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Watkins,JMonty;Burke,JamesM
- 通讯作者:Burke,JamesM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James M Burke其他文献
James M Burke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James M Burke', 18)}}的其他基金
Determining the specificity and biological functions of widespread host mRNA degradation by RNase L
确定 RNase L 广泛降解宿主 mRNA 的特异性和生物学功能
- 批准号:
9757551 - 财政年份:2019
- 资助金额:
$ 48.3万 - 项目类别:
Determining the specificity and biological functions of widespread host mRNA degradation by RNase L
确定 RNase L 广泛降解宿主 mRNA 的特异性和生物学功能
- 批准号:
10116269 - 财政年份:2019
- 资助金额:
$ 48.3万 - 项目类别:
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Standard Grant














{{item.name}}会员




