Understanding the OAS/RNase L pathway during pathogenic viral infections
了解病原性病毒感染期间的 OAS/RNase L 途径
基本信息
- 批准号:10714902
- 负责人:
- 金额:$ 48.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAccelerationAntiviral ResponseAutoimmune DiseasesBiologyCell NucleusCell physiologyComplexCytoplasmCytoplasmic GranulesDengue InfectionDengue VirusDevelopmentDiseaseGene ExpressionImmuneInfluenza A virusInterferon Type IKnowledgeMalignant NeoplasmsMediatingMedicineMessenger RNAMolecularNerve DegenerationNuclearPathogenicityPathway interactionsProcessProductionProtein BiosynthesisRNARegulationResearchRibonucleasesRibonucleoproteinsRibosomesTranslationsViralViral GenesViral ProteinsVirusVirus Diseasescancer therapygene inductionimmunoregulationmRNA DecaymRNA Exportpathogenic virusprogramsresponsestress granulevirology
项目摘要
PROJECT SUMMARY
Ribonuclease L (RNase L) is a key component of the mammalian innate antiviral response. For decades, RNase
L was presumed to reduce viral protein synthesis by cleaving ribosomes to arrest translation. However, we and others
recently demonstrated that RNase L-cleaved ribosomes are translation-competent, and that pathogenic viruses can
synthesize proteins despite activating RNase L. These observations have revealed a significant gap in knowledge
regarding how RNase L functions and how viruses evade it. We have demonstrated that RNase L rapidly degrades nearly
all cellular mRNAs upon activation. This activity regulates three cellular processes that have expanded our understanding
of RNase L and that have elucidated how pathogenic viruses evade and potentially hijack RNase L functions. First,
RNase L reprograms translation to an antiviral state by degrading constitutively expressed cellular mRNAs while
sparing host mRNAs encoding antiviral proteins (e.g., type I interferons), which permits antiviral protein synthesis.
Importantly, the mRNAs encoded by several pathogenic viruses (e.g., dengue virus) similarly evade RNase L-mediated
mRNA decay, thus permitting viral protein synthesis. This observation has elucidated how pathogenic viruses synthesize
proteins despite activating RNase L. This application proposes to characterize the RNase L-mediated mRNA decay
pathway and determine how host and viral mRNAs evade it. Second, RNase L activation triggers the inhibition of nuclear
mRNA export. This is a critical antiviral mechanism that antagonizes influenza A virus protein synthesis, but it also
downregulates the expression of host antiviral proteins (e.g., type I interferons). Importantly, pathogenic viruses (e.g.,
dengue virus) activate this RNase L-dependent pathway, resulting in sequestration of host antiviral mRNAs in the
nucleus. This observation suggests that viruses potentially hijack this function of RNase L to limit host antiviral protein
production. This application aims to determine how RNase L inhibits mRNA export, the breadth of viruses it antagonizes,
how it impacts host antiviral gene expression during pathogenic viral infections. Third, RNase L regulates the assembly
of cytoplasmic antiviral ribonucleoprotein complexes. Specifically, RNase L inhibits the assembly of stress granules and
promotes the assembly of an alternative stress granule-like ribonucleoprotein complex termed RNase L-dependent body.
RNase L-dependent bodies are the predominant antiviral granule assembled in response to SARS-CoV-2 or dengue virus
infection, yet their function is completely unknown. This application aims to determine the function of antiviral stress
granules and RNase L-dependent bodies and to determine how their regulation by RNase L alters the antiviral response.
Understanding the mechanisms and functions of these cellular processes will advance our understanding of the
OAS/RNase L pathway, innate immune antiviral gene induction, and virology. Moreover, it will promote general
medicine by broadly characterizing fundamental cellular, molecular, and RNA biology that is relevant to non-infectious
diseases, including autoimmune diseases, neurodegeneration, and cancer. Lastly, the proposed research will support the
development of promising antiviral, immunomodulatory, and anticancer therapies based on RNase L biology.
项目总结
核糖核酸酶L(核糖核酸酶L)是哺乳动物先天抗病毒反应的重要组成部分。几十年来,RNase
L被推测通过裂解核糖体来阻止翻译来减少病毒蛋白质的合成。然而,我们和其他人
最近证明,核糖核酸酶L裂解的核糖体具有翻译能力,并且致病病毒可以
在激活核糖核酸酶的情况下合成蛋白质。这些观察揭示了知识上的重大差距。
关于核糖核酸酶L是如何工作的,以及病毒是如何规避它的。我们已经证明,核糖核酸酶L几乎迅速降解
激活时所有细胞内的mRNAs。这一活动调节了三个细胞过程,扩展了我们的理解
阐明了致病病毒如何逃避并可能劫持核糖核酸酶L的功能。第一,
核糖核酸酶L通过降解结构性表达的细胞mRNA将翻译重新编程为抗病毒状态,而同时
保留编码抗病毒蛋白(例如,I型干扰素)的宿主mRNAs,这允许抗病毒蛋白的合成。
重要的是,由几种致病病毒(如登革热病毒)编码的mRNAs类似地避开了核糖核酸酶L介导的
信使核糖核酸腐烂,从而允许病毒蛋白质的合成。这一观察阐明了致病病毒是如何合成的
蛋白质激活核糖核酸酶L这一应用建议表征核糖核酸酶L介导的mR NA衰变
途径,并确定宿主和病毒的mRNAs如何逃避它。第二,核糖核酸酶L激活触发核抑制
信使核糖核酸输出。这是对抗甲型流感病毒蛋白质合成的关键抗病毒机制,但它也
下调宿主抗病毒蛋白(如I型干扰素)的表达。重要的是,致病病毒(例如,
登革病毒)激活这一依赖于L的核糖核酸酶途径,导致宿主抗病毒mRNAs在
原子核。这一观察结果表明,病毒可能劫持了核糖核酸酶L的这一功能,以限制宿主抗病毒蛋白
制作。这项应用旨在确定核糖核酸酶L是如何抑制基因输出的,它对抗的病毒的广度,
在病原性病毒感染期间,它如何影响宿主抗病毒基因的表达。第三,网易L规范集结
细胞质抗病毒核糖核蛋白复合体。具体地说,核糖核酸酶L抑制应激颗粒和
促进另一种名为核糖核酸酶L依赖体的应激颗粒状核糖核蛋白复合体的组装。
核糖核酸酶L依赖的小体是为应对SARS-CoV-2或登革病毒而组装的主要抗病毒颗粒
感染,但它们的功能完全未知。这项应用旨在确定抗病毒应激的功能
目的是研究核糖核酸酶L对颗粒和核糖核酸酶L依赖小体的调节作用,并确定核糖核酸酶L对它们的调节如何改变抗病毒反应。
了解这些细胞过程的机制和功能将促进我们对
Oas/核糖核酸酶L通路;天然免疫抗病毒基因诱导;病毒学。此外,它还将促进一般
通过广泛描述与非传染性相关的基本细胞、分子和RNA生物学来进行医学研究
疾病,包括自身免疫性疾病、神经变性和癌症。最后,拟议的研究将支持
基于核糖核酸酶L生物的抗病毒、免疫调节和抗癌治疗的研究进展。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
G3BP1-dependent condensation of translationally inactive viral RNAs antagonizes infection.
- DOI:10.1126/sciadv.adk8152
- 发表时间:2024-02-02
- 期刊:
- 影响因子:13.6
- 作者:Burke, James M.;Ratnayake, Oshani C.;Watkins, J. Monty;Perera, Rushika;Parker, Roy
- 通讯作者:Parker, Roy
RNase L-induced bodies sequester subgenomic flavivirus RNAs and re-establish host RNA decay.
RNase L 诱导的体隔离亚基因组黄病毒 RNA 并重新建立宿主 RNA 衰变。
- DOI:10.1101/2024.03.25.586660
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Watkins,JMonty;Burke,JamesM
- 通讯作者:Burke,JamesM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James M Burke其他文献
James M Burke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James M Burke', 18)}}的其他基金
Determining the specificity and biological functions of widespread host mRNA degradation by RNase L
确定 RNase L 广泛降解宿主 mRNA 的特异性和生物学功能
- 批准号:
9757551 - 财政年份:2019
- 资助金额:
$ 48.3万 - 项目类别:
Determining the specificity and biological functions of widespread host mRNA degradation by RNase L
确定 RNase L 广泛降解宿主 mRNA 的特异性和生物学功能
- 批准号:
10116269 - 财政年份:2019
- 资助金额:
$ 48.3万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Standard Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Standard Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




