Causes and consequences of microbe-mediated asexuality
微生物介导的无性繁殖的原因和后果
基本信息
- 批准号:10714424
- 负责人:
- 金额:$ 35.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AppearanceArthropodsAsexual ReproductionBacteriaBacterial ProteinsBiological ModelsBiologyCell divisionCellular biologyCreativenessDefectDegenerative DisorderDevelopmentDrosophila genusDrug resistanceEnvironmentEukaryotaEvolutionFertilityGene PoolGeneticGenetic VariationGenomic approachGenomicsGoalsHealthHumanInheritedInsectaInterdisciplinary StudyLinkMalignant NeoplasmsMapsMediatingMeiosisMicrobeMitosisMitoticModelingMolecularOrganismParthenogenesisPathogenesisPathogenicityPloidiesProcessProteinsQuantitative Trait LociReproductionReproductive BiologyResearchRickettsiaSex FunctioningSexual ReproductionSystemWolbachiaYeastsasexualasexualitycomparative genomicsforward geneticsgenome sequencinginventionmicrobialnovelnovel therapeuticspathogenreproductivesexsymbionttheoriestraittumor
项目摘要
Project Summary
Sexual reproduction evolved more than one billion years ago, shortly after the appearance of eukaryotes. Sex
is theorized to be an important aspect of creating genetic variation, adapting to new environments, and in
removing disadvantageous traits from the gene pool. Despite this, many eukaryotes have reverted to asexual
reproductive strategies. Importantly, such transitions to asexual reproduction have huge evolutionary impacts:
we see regular examples of this in the rapid spread of invasive, pathogenic, and drug-resistant organisms.
Unfortunately, such transitions are notoriously difficult to mechanistically interrogate due to their lack of
experimental tractability and the fact that many reversions to asexuality are quite ancient. However, arthropods
are rich in recently acquired vertically inherited microbes (e.g., Wolbachia, Rickettsia, and Cardinium) that
convert their arthropod hosts to asexual reproduction. So-called “parthenogenesis induction” has been
reinvented multiple times across these bacteria and relies on microbial mechanisms for impacting host meiosis
or mitosis to alter ploidy. We can manipulate these recently asexual lineages in the lab to mechanistically
define the cell biology of asexual reproduction. Furthermore, because there are numerous independent
transitions to microbe-mediated asexuality, and lineages will slowly undergo a loss of sexual function, we can
use this system to track the genomic and mechanistic consequences of lost sex. The long-term goal of my lab
is to link mechanistic processes of mitosis, meiosis, and reproduction to long-term organismal and genomic
consequences. This proposal describes my lab’s research goals across the next five years, which
include: (1) mechanistically characterizing bacterial proteins mediating asexual reproduction, (2)
identifying mitotic- and meiotic- effector proteins across diverse bacteria and reproductive biologies,
and (3) using forward genetics to map the genomic consequences of lost sex. Specifically, our creative
interdisciplinary research plan integrates genomic approaches (e.g., genome sequencing, comparative
genomics, quantitative trait loci mapping), molecular approaches in non-model organisms, and genetics in
tractable model systems (e.g., yeast, Drosophila). We will build on our recent discovery of the first putative
asexuality inducing bacterial effector proteins to broadly define how microbes have evolved to manipulate
mitosis and meiosis, and disentangle the causes of reproductive switches from the consequences. In addition
to the broad significance of reproduction, these systems afford new opportunities to understand fundamental
aspects of cell biology that underly many human-health relevant processes. For example, defects in mitosis
are typical of certain degenerative conditions and cancers, and changes in ploidy significantly contribute to
fungal pathogenesis and drug resistance. Our focus on novel mechanisms for altering reproduction and cell
division will support the development of new therapeutic avenues across a range of systems.
项目摘要
有性生殖进化于10亿多年前,在真核生物出现后不久。性
在理论上是创造遗传变异,适应新环境,
从基因库中去除不利的性状。尽管如此,许多真核生物已经恢复到无性
生殖策略。重要的是,这种向无性生殖的转变会产生巨大的进化影响:
我们经常看到这方面的例子,如侵入性、致病性和抗药性生物体的迅速传播。
不幸的是,这种转变由于其缺乏可操作性而非常难以机械地询问。
实验的易处理性和事实上,许多恢复到无性恋是相当古老的。然而,节肢动物
富含最近获得的垂直遗传微生物(例如,沃尔巴克氏体、立克次体和Cardinium),
将它们的节肢动物宿主转化为无性繁殖所谓的“孤雌生殖诱导”已经被
在这些细菌中多次重新发明,并依赖于影响宿主减数分裂的微生物机制
或有丝分裂来改变倍性。我们可以在实验室里操纵这些最近无性繁殖的谱系,
定义了无性繁殖的细胞生物学。此外,由于有许多独立的
过渡到微生物介导的无性恋,谱系将慢慢经历性功能的丧失,我们可以
用这个系统来追踪失去性生活的基因组和机制后果。我实验室的长期目标是
是将有丝分裂、减数分裂和生殖的机械过程与长期的生物体和基因组联系起来,
后果该提案描述了我的实验室在未来五年的研究目标,
包括:(1)机械表征介导无性繁殖的细菌蛋白,(2)
在不同的细菌和生殖生物学中鉴定有丝分裂和减数分裂效应蛋白,
以及(3)使用正向遗传学绘制失去性行为的基因组后果。特别是,我们的创意
跨学科研究计划整合了基因组方法(例如,比较基因组测序
基因组学,数量性状基因座作图),非模式生物的分子方法,
易于处理的模型系统(例如,酵母,果蝇)。我们将在最近发现的第一个
无性诱导细菌效应蛋白,以广泛定义微生物如何进化到操纵
有丝分裂和减数分裂,并从结果中解开生殖开关的原因。此外
对于繁殖的广泛意义,这些系统提供了新的机会来理解基本的
细胞生物学的各个方面是许多人类健康相关过程的基础。例如,有丝分裂的缺陷
是某些退行性疾病和癌症的典型特征,倍性的变化显著有助于
真菌致病机理和耐药性。我们专注于改变生殖和细胞的新机制
该司将支持在一系列系统中开发新的治疗途径。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identification of parthenogenesis-inducing effector proteins in Wolbachia.
沃尔巴克氏体中孤雌生殖诱导效应蛋白的鉴定。
- DOI:10.1101/2023.12.01.569668
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Fricke,LauraC;Lindsey,AmeliaRi
- 通讯作者:Lindsey,AmeliaRi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amelia Ryan Isis Lindsey其他文献
Amelia Ryan Isis Lindsey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
ScAnt - an open-source platform for the creation of 3D models of arthropods (and other small objects)
ScAnt - 用于创建节肢动物(和其他小物体)3D 模型的开源平台
- 批准号:
EP/X032302/1 - 财政年份:2023
- 资助金额:
$ 35.62万 - 项目类别:
Research Grant
Predicting changes in carbon cycling services provided by soil arthropods
预测土壤节肢动物提供的碳循环服务的变化
- 批准号:
580563-2022 - 财政年份:2022
- 资助金额:
$ 35.62万 - 项目类别:
Alliance Grants
Biodiversity and ecological function of northern terrestrial arthropods
北方陆生节肢动物的生物多样性和生态功能
- 批准号:
518017-2019 - 财政年份:2022
- 资助金额:
$ 35.62万 - 项目类别:
Discovery Grants Program - Northern Research Supplement
Neuroendocrine systems regulating physiological processes in blood-feeding arthropods
神经内分泌系统调节食血节肢动物的生理过程
- 批准号:
RGPIN-2020-06130 - 财政年份:2022
- 资助金额:
$ 35.62万 - 项目类别:
Discovery Grants Program - Individual
Biodiversity and ecological function of northern terrestrial arthropods
北方陆生节肢动物的生物多样性和生态功能
- 批准号:
RGPIN-2019-04448 - 财政年份:2022
- 资助金额:
$ 35.62万 - 项目类别:
Discovery Grants Program - Individual
Biology of Arthropods at low temperatures
低温下节肢动物的生物学
- 批准号:
RGPIN-2017-04230 - 财政年份:2022
- 资助金额:
$ 35.62万 - 项目类别:
Discovery Grants Program - Individual
Biodiversity and ecological function of northern terrestrial arthropods
北方陆生节肢动物的生物多样性和生态功能
- 批准号:
RGPIN-2019-04448 - 财政年份:2021
- 资助金额:
$ 35.62万 - 项目类别:
Discovery Grants Program - Individual
Diversity, Evolution, and Ecology of Stem Group Arthropods (Radiodontans, Opabinids) from the Middle Cambrian Burgess Shale
中寒武统伯吉斯页岩干群节肢动物(放射齿兽类、奥巴宾类)的多样性、进化和生态
- 批准号:
544246-2019 - 财政年份:2021
- 资助金额:
$ 35.62万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Neuroendocrine systems regulating physiological processes in blood-feeding arthropods
神经内分泌系统调节食血节肢动物的生理过程
- 批准号:
RGPIN-2020-06130 - 财政年份:2021
- 资助金额:
$ 35.62万 - 项目类别:
Discovery Grants Program - Individual
Biology of Arthropods at low temperatures
低温下节肢动物的生物学
- 批准号:
RGPIN-2017-04230 - 财政年份:2021
- 资助金额:
$ 35.62万 - 项目类别:
Discovery Grants Program - Individual