Automated Indexing for Publication Types and Study Designs
出版物类型和研究设计的自动索引
基本信息
- 批准号:10715907
- 负责人:
- 金额:$ 32.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-02 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:Animal ModelAutomated IndexingBibliographic DatabasesDataDatabasesExplosionGuidelinesHealthHumanInfrastructureInterventionJournalsLiteratureManualsManuscriptsMedicalMethodsModelingPerformancePharmacologic SubstancePrintingPubMedPublicationsPublishingResearch DesignResearch PersonnelRetrievalStudentsTextUnited States National Library of Medicineeffectiveness studyhuman diseasehuman modelimprovedindexingmachine learning methodmachine learning modelneuralnovel therapeuticspreclinical studyprototypesystematic reviewtoolvector
项目摘要
Project Summary/Abstract
Retrieving biomedical articles from bibliographic databases requires accurate, detailed indexing of the topics
that are discussed as well as their publication types and study designs. It is difficult for indexers to keep up with
manual assignments in view of the explosion of published literature. Although NLM has recently employed
automatic machine learning methods to index articles according to the major topics discussed, there is still no
automatic means of indexing each article across all publication types and study designs. We have recently
created a working prototype tool, Multi-Tagger, which has assigned probabilistic predictive scores for all
PubMed articles for 50 different publication types and study designs (collectively, PTs). We now propose to
develop Multi-Tagger 2.0, to handle a wider variety of study designs, articles, users and use cases, and to
ensure that the data are disseminated in a form that is appropriate to each different type of user. Specifically,
we aim to:
Aim 1. Optimize methods for assigning Publication Types and study designs to both PubMed and non-
PubMed biomedical articles, preprints and manuscripts.
Aim 2. Evaluate PTs in detail, taking into account model performance, use cases and users.
Aim 3. Optimize dissemination of PT predictive scores by query interface and API.
Aim 4. Explore how to integrate Multi-Tagger with other tools for automating evidence synthesis.
The proposed studies will greatly enhance retrieval of relevant articles and preprints across multiple
databases, and will be useful for a wide range of biomedical end-users (clinicians, researchers, students and
journal editors) as well as user groups including systematic review groups, bibliographic database managers,
those studying preclinical animal models of human disease, and pharmaceutical companies developing new
drug treatments. Improving the infrastructure of the biomedical literature will thus indirectly impact on human
health.
项目概要/摘要
从书目数据库检索生物医学文章需要准确、详细的主题索引
讨论的内容以及它们的出版物类型和研究设计。索引器很难跟上
鉴于出版文献的爆炸式增长,手动作业。尽管 NLM 最近雇用了
自动机器学习方法根据讨论的主要主题索引文章,仍然没有
自动为所有出版物类型和研究设计中的每篇文章建立索引。我们最近有
创建了一个工作原型工具 Multi-Tagger,它为所有数据分配了概率预测分数
50 种不同出版物类型和研究设计的 PubMed 文章(统称为 PT)。我们现在建议
开发 Multi-Tagger 2.0,以处理更广泛的研究设计、文章、用户和用例,并
确保数据以适合每种不同类型用户的形式传播。具体来说,
我们的目标是:
目标 1. 优化为 PubMed 和非 PubMed 分配出版物类型和研究设计的方法
PubMed 生物医学文章、预印本和手稿。
目标 2. 详细评估 PT,同时考虑模型性能、用例和用户。
目标 3. 通过查询接口和 API 优化 PT 预测分数的传播。
目标 4. 探索如何将 Multi-Tagger 与其他工具集成以自动化证据合成。
拟议的研究将极大地增强跨多个相关文章和预印本的检索
数据库,并将对广泛的生物医学最终用户(临床医生、研究人员、学生和
期刊编辑)以及用户组,包括系统评审组、书目数据库管理员、
研究人类疾病临床前动物模型的人员以及开发新药物的制药公司
药物治疗。因此,改善生物医学文献的基础设施将间接影响人类
健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NEIL R SMALHEISER其他文献
NEIL R SMALHEISER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NEIL R SMALHEISER', 18)}}的其他基金
RNAi-Mediated Gene Suppression in Adult Mammalian CNS
RNAi介导的成年哺乳动物中枢神经系统基因抑制
- 批准号:
6668489 - 财政年份:2002
- 资助金额:
$ 32.17万 - 项目类别:
RNAi-Mediated Gene Suppression in Adult Mammalian CNS
RNAi介导的成年哺乳动物中枢神经系统基因抑制
- 批准号:
6531730 - 财政年份:2002
- 资助金额:
$ 32.17万 - 项目类别:
Arrowsmith Data Mining Techniques in Neuro-Informatics
神经信息学中的 Arrowsmith 数据挖掘技术
- 批准号:
6333330 - 财政年份:2001
- 资助金额:
$ 32.17万 - 项目类别:
Arrowsmith Data Mining Techniques in Neuro-Informatics
神经信息学中的 Arrowsmith 数据挖掘技术
- 批准号:
6608110 - 财政年份:2001
- 资助金额:
$ 32.17万 - 项目类别:
相似海外基金
AUTOMATED INDEXING & NATURAL LANGUAGE RETRIEVAL OF RELATED ABSTRACTS
自动索引
- 批准号:
3874090 - 财政年份:
- 资助金额:
$ 32.17万 - 项目类别:














{{item.name}}会员




