Structural systems biology of microenvironmental oxidative stress and synthetic biology intervention
微环境氧化应激的结构系统生物学与合成生物学干预
基本信息
- 批准号:10715112
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAgingBacteriaBindingBiochemical PathwayBiological AssayCellsCellular StressConserved SequenceData AnalysesDevelopmentDiagnosisDiagnosticDiseaseEngineeringEnvironmental ImpactEscherichia coliFoundationsFunctional disorderFutureGlyceraldehyde-3-Phosphate DehydrogenasesHumanIn VitroInterventionLeadMachine LearningMetabolicMetabolic dysfunctionMetabolismMitochondrial ProteinsModelingMolecularMolecular and Cellular BiologyOrganismOutcomeOuter Mitochondrial MembraneOxidation-ReductionOxidative StressPhenotypePropertyProtein EngineeringProteinsProteomeProteomicsRadiation ToxicityReactive Oxygen SpeciesRecombinantsResearchResistanceResolutionSiteStressStructure-Activity RelationshipSystems BiologyTechnologyTestingTheoretical modelTherapeuticVariantWorkbiological systemsdesignenzyme activitygenome-widehuman diseaseinterestmetabolomicsmitochondrial dysfunctionmitochondrial membranemolecular modelingoxidationoxidative damageprotein functionprotein structureprotein structure functionrational designreconstructionsimulationsynthetic biologytherapeutic development
项目摘要
ABSTRACT
I seek to characterize proteomic and fundamental molecular properties of bacteria and human cells under
oxidative stress as a means to understand mechanistic underpinnings of sensitivity phenotypes.
1) Oxidative stress broadly impacts protein function, but it is very challenging to experimentally determine
which protein malfunctions lead to cellular stress phenotypes. I propose a structural systems biology approach
to answering these questions for induced stress in E. coli and human cells. Genome-scale metabolic network
reconstruction will be integrated with solved and modeled protein structures to enable detailed models of
proteomic oxidative damage and its impact on cellular metabolism, permitting stress simulations and prediction
of metabolic bottlenecks. Predicted stress phenotypes will be validated by proteomics, metabolomics, and
targeted in vitro enzyme activity assays under oxidative stress. This approach will reveal protein targets to
inform future efforts in diagnosing and treating oxidative-stress-associated conditions including radiation
toxicity, metabolic dysfunction, and aging.
2) I will develop a theoretical model of molecular sensitivity to oxidative damage of generic proteins of interest
and serve for design and engineering more robust variants. Redox proteomics can identify oxidation sites at
residue resolution on specific proteins or proteome-wide. Analysis of this data in the context of 3D protein
structures will uncover molecular properties rendering some sites and proteins more vulnerable than others. I
will validate the model in the context of mammalian glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
which aggregates on the mitochondrial membrane causing dysfunction under oxidative stress. I will combine
the model for molecular vulnerability to oxidation with evolutionary sequence conservation analysis to design
oxidation-robust GAPDH variants. These designs will be experimentally characterized through recombinantly
expressed proteins and cell-based assays for enzyme activity, oxidation states, and phenotypic outcomes
under stress. Results will have implications for human diseases related to GAPDH dysfunction and will serve
as a foundation for rational design of stress-resistant proteins, a significant technological advance.
3) I will investigate the functionality of specialized intrinsically disordered proteins (IDPs) for cellular protection
against oxidative stress. Exploiting the model case of GAPDH oxidation again, here I will not alter GAPDH
itself but introduce synthetic IDPs engineered to target the mitochondrial outer membrane or GAPDH directly
through molecular interactions. Some IDPs are known to form protective barriers to reactive oxygen species
(ROS) or disaggregate proteins, and I will investigate whether these can serve to protect GAPDH under stress.
Designs will be tested on purified GAPDH in enzymatic activity assays and in cell-based assays for
mitochondrial dysfunction and protein oxidation. This work would further the fundamental understanding of
IDP function and lay groundwork for therapeutic development.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROGER LARKEN CHANG其他文献
ROGER LARKEN CHANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Collaborative R&D
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Operating Grants
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
- 批准号:
23K20355 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
- 批准号:
23K24782 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




