Dissecting the genetics and evolution of complex traits using whole-genome genealogies
使用全基因组谱系剖析复杂性状的遗传学和进化
基本信息
- 批准号:10714153
- 负责人:
- 金额:$ 37.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-19 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsCalibrationCodeComplexComputer softwareComputing MethodologiesDataData SetEvolutionGene StructureGenealogyGeneticGenetic DiseasesGenetic PolymorphismGenetic RecombinationGenotypeGraphHeritabilityHuman GenomeIndividualLinkage DisequilibriumMapsMeasurementMethodologyMethodsModelingMutationPaperPhenotypePopulationPopulation GeneticsRunningStructureTestingTimeUncertaintybiobankcausal variantcomputerized toolsgenetic pedigreegenome sequencinggenome wide association studyhuman diseaseimprovednovelreconstructionresponsetraitwhole genome
项目摘要
Project Summary
The Wei Lab develops accurate and scalable inference methods in population genetics and
statistical genetics. In the next few years, we will focus on understanding the evolution and
genetic basis of complex traits. Large biobank datasets with hundreds of thousands of human
genomes and tens of thousands of phenotypic measurements provide unprecedented
opportunities to understand complex phenotypes. At the same time, these massive data sets
demand more scalable and unbiased computational methods. My lab recently developed new
algorithms and data structures to improve the scalability of standard computations involving
genotype matrices, including the calculation of heritability components and linkage
disequilibrium scores. Our RSHE method runs 10-100x faster than the current state-of-the-art
method to allow heritability analysis on biobank-size whole-genome sequencing data. Further
methodological improvements will require new conceptualizations of the genotype-phenotype
relationships. Conventional statistical genetics uses genotype matrices directly, ignoring that
genetic polymorphisms are organized by gene genealogy into an interpretable graph structure.
Whole-genome genealogies can now be readily inferred using ancestral recombination graph
(ARG) inference software. Studying genealogy-phenotype relationships on ARGs could pinpoint
causal mutations, reduce multiple testing, promote algorithm efficiency, and integrate
evolutionarily meaningful models. We are developing a scalable algorithm for ARG-wide
association studies and will demonstrate its advantages even in the face of uncertainty in ARG
reconstruction. We will also develop fine-mapping methods on ARGs to study homogeneous
and admixed populations. Leveraging our RSHE code, we will implement a scalable method for
estimating heritability from ARGs and will apply this new method to the UK biobank to
understand why heritability estimated in unrelated individuals is lower than that from pedigree
analyses. Building upon this, we will implement a novel model parameterization to study
complex trait evolution using ARGs. Current polygenic adaptation papers all inevitably assume
that GWAS significant SNPs can be treated as causal variants and that different polygenicity
levels across phenotypes can be ignored. Our proposed method will provide the first rigorous
framework that takes these factors into account. In summary, this proposal will develop methods
to fully integrate ARGs into statistical genetics to better understand and conceptualize
phenotype-genealogy relationships. It will provide more scalable computational tools for the field
in response to the rapidly growing biomedical data and enable novel and more calibrated
discoveries for human disease genetics and phenotypic evolution.
项目摘要
魏实验室开发了精确和可扩展的群体遗传学和
统计遗传学。在接下来的几年里,我们将专注于了解
复杂性状的遗传基础。包含数十万人的大型生物库数据集
基因组和数以万计的表型测量提供了前所未有的
了解复杂表型的机会。与此同时,这些海量数据集
需要更具伸缩性和不偏不倚的计算方法。我的实验室最近开发出了新的
算法和数据结构,以提高标准计算的可伸缩性
基因型矩阵,包括遗传力分量和连锁的计算
不平衡分数。我们的RSHE方法的运行速度比当前最先进的方法快10-100倍
允许对生物库大小的全基因组测序数据进行遗传力分析的方法。进一步
方法学的改进将需要对基因-表型进行新的概念化。
两性关系。传统的统计遗传学直接使用了基因型矩阵,而忽略了
遗传多态由基因谱系组织成可解释的图形结构。
全基因组谱系现在可以很容易地使用祖先重组图来推断
(Arg)推理软件。研究ARGs的系谱-表型关系可以准确地确定
因果突变,减少多次测试,提升算法效率,整合
对进化有意义的模型。我们正在为ARG范围内开发一种可扩展的算法
协会研究并将在ARG面临不确定性的情况下展示其优势
重建。我们还将开发ARG上的精细映射方法来研究同质性
和混合种群。利用我们的RSHE代码,我们将为
从ARGS估计遗传力,并将这种新方法应用于英国生物库
理解为什么无亲缘关系个体的遗传力估计低于家系估计遗传力
分析。在此基础上,我们将实现一种新的模型参数化来研究
使用ARGS进行复杂的性状进化。目前的多基因适应论文都不可避免地假设
Gwas显著SNPs可被视为因果变异,且不同的多基因
表型的水平可以忽略不计。我们提议的方法将提供第一个严格的
考虑到这些因素的框架。总而言之,这项提案将制定方法
将ARGS完全整合到统计遗传学中,以更好地理解和概念化
表型-家谱关系。它将为现场提供更具伸缩性的计算工具
响应快速增长的生物医学数据并使新的和更精确的
人类疾病遗传学和表型进化的发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinzhu Wei其他文献
Xinzhu Wei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
- 批准号:
2406511 - 财政年份:2024
- 资助金额:
$ 37.98万 - 项目类别:
Standard Grant
New calibration standards and methods for radiometry and photometry after phaseout of incandescent lamps
淘汰白炽灯后辐射测量和光度测量的新校准标准和方法
- 批准号:
10086156 - 财政年份:2023
- 资助金额:
$ 37.98万 - 项目类别:
EU-Funded
Neutrino oscillation at T2K and Hyper Kamiokande and development of the Hyper Kamiokande light injection calibration system
T2K 和 Hyper Kamiokande 的中微子振荡以及 Hyper Kamiokande 光注入校准系统的开发
- 批准号:
2888846 - 财政年份:2023
- 资助金额:
$ 37.98万 - 项目类别:
Studentship
Collaborative Research: Calibration of Raman Spectroscopy for Calcite Saturation State in Marine Biogenic Calcification
合作研究:海洋生物钙化中方解石饱和状态的拉曼光谱校准
- 批准号:
2323221 - 财政年份:2023
- 资助金额:
$ 37.98万 - 项目类别:
Standard Grant
SBIR Phase II: An innovative calibration software to suppress torque ripple and improve performance of electric motors.
SBIR Phase II:一款创新的校准软件,可抑制扭矩脉动并提高电动机的性能。
- 批准号:
2233023 - 财政年份:2023
- 资助金额:
$ 37.98万 - 项目类别:
Cooperative Agreement
POSE: Phase II: Open-Source Precision, High Accuracy and Security Environment (OpenPHASE) For Time Verification, Calibration, and Interoperability
POSE:第二阶段:用于时间验证、校准和互操作性的开源精密、高精度和安全环境 (OpenPHASE)
- 批准号:
2303726 - 财政年份:2023
- 资助金额:
$ 37.98万 - 项目类别:
Standard Grant
Spatial Calibration of Head-Mounted Displays Based on Implicit Function Representation of Light Fields Using Deep Learning
基于深度学习光场隐式函数表示的头戴式显示器空间校准
- 批准号:
23K16920 - 财政年份:2023
- 资助金额:
$ 37.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of 3D calibration system in JSNS2 experiment
JSNS2实验中3D标定系统的开发
- 批准号:
23K13133 - 财政年份:2023
- 资助金额:
$ 37.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
eMB: Collaborative Research: Discovery and calibration of stochastic chemical reaction network models
eMB:协作研究:随机化学反应网络模型的发现和校准
- 批准号:
2325184 - 财政年份:2023
- 资助金额:
$ 37.98万 - 项目类别:
Standard Grant
CalibXBatt - Calibration of XCT-Automatic Defect Recognition for Battery Inspection [10050292]
CalibXBatt - 用于电池检查的 XCT 自动缺陷识别校准 [10050292]
- 批准号:
10061803 - 财政年份:2023
- 资助金额:
$ 37.98万 - 项目类别:
Collaborative R&D