Mechanisms and Functions of Unconventional Intercellular Calcium Waves in Electrically Non-excitable Cells
电不可兴奋细胞中非常规细胞间钙波的机制和功能
基本信息
- 批准号:10714066
- 负责人:
- 金额:$ 36.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActomyosinAlgorithmsBiological ProcessCRISPR imagingCalciumCalcium OscillationsCalcium SignalingCell LineCell physiologyCellsChemicalsDissectionEpithelial CellsFoundationsGene ExpressionGeneticGrantHeartKnowledgeLinkMechanicsMediatingMolecularOrganismPathologyPhysiologicalProcessProteinsResearchSignal TransductionSystemTherapeuticWorkcell behaviorcell motilityextracellularinnovationinsightlive cell imagingmechanical stimulusmechanotransductionnovelprogramssensorsuccesstranscriptome
项目摘要
Project Summary
Mechanotransduction is the process by which cells sense and transduce extracellular mechanical stimuli into
intracellular signaling and gene expression. Mechanotransduction is ubiquitous across diverse organisms and
has significant influences on cell function and behavior, in parallel with chemical and genetic signal transductions.
The mechanics of microenvironments mediate mechanotransduction through cell-microenvironment interactions
and its mis-regulation is at the heart of various pathologies. A major knowledge gap in the field is how mechanical
stimuli from microenvironments are transduced into cellular signaling and what the relationships are between
microenvironmental mechanics, cell signaling, gene expression, and cell functions. We recently discovered that
multiple electrically non-excitable epithelial cell lines can initiate and propagate spontaneous long-distance
intercellular calcium waves (ICWs), when cells are cultured in 2D/3D soft microenvironments, but not in stiff
ones. Because calcium regulates a broad range of essential cell functions, our findings uncover an
unprecedented mechanotransduction nexus between microenvironmental mechanics and diverse cellular
signals. We hypothesize that the cellular actomyosin contractility that is regulated by soft microenvironments
(10s kPa) promotes the initiation and propagation of the long-distance ICWs. In this R35 grant, we propose a
cross-disciplinary research program that systematically elucidates this novel mechanotransduction process and
establishes a framework to bridge the knowledge gap. This will be accomplished by leveraging innovative
approaches such as genetically encoded fluorescent calcium sensors, CRISPR imaging, high-throughput cell
selection, and algorithms to pursue two interrelated research themes. The first theme is the identification of
regulatory mechanisms that initiate the calcium waves by active modulations and live-cell imaging of contractility-
associated proteins. The expected results will provide important molecular insights of the link between
mechanotransduction and the ICWs. The second theme is the dissection of mechanisms through which calcium
waves enhance cell migration and achieve biological functions by manipulating ICWs and investigating the full
transcriptome profiles. The results will advance our understanding of the relationships between
microenvironmental mechanics, cell signaling, gene expression, and cell functions. We envision that the
fundamental principles uncovered in this project will apply broadly to various cell systems and physiological
functions. The long-term objective of our research program is to establish a mechanistic foundation of
mechanobiology and promote the creation of therapeutic strategies which leverage these principles. The success
of this proposal will enable my group to embark in a long-term research direction to tackle a variety of critical and
challenging questions regarding the interplay between mechanotransduction and cell signaling.
项目摘要
机械转导是细胞感知细胞外机械刺激并将其转化为
细胞内信号和基因表达。机械转导在不同的生物体中普遍存在,
对细胞功能和行为有重大影响,与化学和遗传信号转导平行。
微环境力学通过细胞-微环境相互作用来调节机械转导
而它的不当监管是各种病理的核心。该领域的一个主要知识空白是如何机械
来自微环境的刺激被转化为细胞信号,以及它们之间的关系
微环境力学、细胞信号、基因表达和细胞功能。我们最近发现,
多个电不可兴奋的上皮细胞系可以发起和繁殖自发的远距离
细胞在2D/3D软微环境中培养,而不是在僵硬微环境中培养时,细胞间钙波(ICW)
一个。由于钙调节广泛的基本细胞功能,我们的发现揭示了一种
微环境力学与多种细胞之间史无前例的力学转导关系
信号。我们假设,受软微环境调节的细胞肌球蛋白收缩能力
(10s Kpa)促进了长距离ICW的萌生和传播。在这笔35卢比的赠款中,我们提议
跨学科研究计划,系统地阐明这一新的机械转导过程和
建立一个弥合知识鸿沟的框架。这将通过利用创新的
基因编码的荧光钙传感器、CRISPR成像、高通量细胞等方法
选择和算法来追求两个相互关联的研究主题。第一个主题是识别
通过主动调节和收缩能力的活细胞成像来启动钙波的调节机制-
相关蛋白质。预期的结果将提供关于两者之间联系的重要分子洞察力
机械转导和ICW。第二个主题是对钙通过
WAVE通过操纵ICW和研究完整的
转录组特征。这一结果将促进我们对两者之间关系的理解
微环境力学、细胞信号、基因表达和细胞功能。我们设想,
这个项目中揭示的基本原理将广泛应用于各种细胞系统和生理
功能。我们研究计划的长期目标是建立一个机械基础
机制生物学,并促进创造利用这些原则的治疗策略。成功之路
这项建议将使我的小组能够着手进行长期的研究方向,以解决各种关键和
关于机械转导和细胞信号之间相互作用的挑战性问题。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biophysics in tumor growth and progression: from single mechano-sensitive molecules to mechanomedicine.
- DOI:10.1038/s41388-023-02844-x
- 发表时间:2023-11
- 期刊:
- 影响因子:8
- 作者:Xin, Ying;Li, Keming;Huang, Miao;Liang, Chenyu;Siemann, Dietmar;Wu, Lizi;Tan, Youhua;Tang, Xin
- 通讯作者:Tang, Xin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xin Tang其他文献
Xin Tang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 36.26万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 36.26万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 36.26万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 36.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 36.26万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 36.26万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 36.26万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 36.26万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 36.26万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 36.26万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




