Non-invasive hemodynamic and biomechanic imaging methods for early risk prediction in aortic dissection

用于主动脉夹层早期风险预测的非侵入性血流动力学和生物力学成像方法

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Aortic dissection (AD) is a disease characterized by sudden tearing of the inner layers of the aortic wall creating a false lumen (FL) channeling aortic blood flow. The vast majority of acute AD patients survive into the chronic phase, although long-term outcomes are poor with about 50% of patients experiencing aorta-related mortality or requiring surgical repair by 10 years. A major contributor to poor long-term outcomes is growth of the FL. Thoracic endovascular aortic repair (TEVAR) is a minimally invasive surgical therapy which can halt FL growth and reduce AD mortality; however, this treatment comes with cost, risk of procedural complications, and is less effective over time owing to increased tissue stiffness. Accurate prediction of disease trajectory at early phases is limited with current metrics but is highly desirable as this would allow TEVAR to be targeted to high-risk patients in a timely manner, sparing those at lower risk from potentially unnecessary procedures. Current methods for estimating risk in AD are largely based on anatomic metrics (e.g., aortic diameter), which poorly capture functional aspects of AD. To overcome these limitations, we propose to apply advanced imaging techniques, namely 4D Flow magnetic resonance imaging (MRI) and 4D computed tomography angiography (CTA), to characterize and quantify functional processes such as FL pressure and FL wall stiffness, which elude current imaging approches and have been implicated as important factors in predicting long-term behavior of AD. We hypothesize that assessments of these functional metrics will, improve our prediction of false lumen growth rate (FLGR) compared to standard anatomic metrics. We plan to prospectively recruit patients with either uncomplicated type B (n=30) or surgically repaired type A (n=45) aortic dissection to undergo baseline 4D Flow and 4D CTA imaging in the subacute period (1-3 months post-dissection) as well as follow-up studies at 1- and 2-years post-dissection, with the primary outcome being FLGR. To achieve these goals, the Aims of this proposal are: 1) Identify baseline hemodynamic and biomechanical metrics in the subacute period of AD that predict FL growth rate over time. FL pressure will be quantified from 4D Flow MRI using indirect and direct methods based on physics-based image analysis, with regional FL wall stiffness quantified by merging FL pressure with cyclic aortic wall deformation by 4D CT; 2) Determine the trajectories of functional metrics over time that best predict progressive FL growth. Longitudinal changes in pressure and wall stiffness between baseline and 1- and 2-year follow-up scans will be assessed to identify patients who achieve a new equilibrium versus those who continue to progress; 3) Develop a clinical assessment tool to predict risk of progressive FL growth combining functional metrics, anatomic parameters and patient characteristics with a focus on simplicity and accuracy for dissection-type specific prediction of the FLGR at the earliest possible time point. This work seeks to shift the paradigm of AD assessment from pure anatomic characterization by integrating functional imaging biomarkers to provide accurate predictions of disease trajectory and allow for optimal determination of surgical candidacy and timing.
项目总结/文摘

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
lGeneralized super-resolution 4D Flow MRI-using ensemble learning to extend across the cardiovascular system.
l 广义超分辨率 4D Flow MRI - 使用集成学习扩展到整个心血管系统。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ericsson,Leon;Hjalmarsson,Adam;Akbar,MuhammadUsman;Ferdian,Edward;Bonini,Mia;Hardy,Brandon;Schollenberger,Jonas;Aristova,Maria;Winter,Patrick;Burris,Nicholas;Fyrdahl,Alexander;Sigfridsson,Andreas;Schnell,Susanne;Figueroa,CAlbe
  • 通讯作者:
    Figueroa,CAlbe
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Scott Burris其他文献

Nicholas Scott Burris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Scott Burris', 18)}}的其他基金

Vascular Deformation Mapping (VDM) for Automated, 3D Assessment of Thoracic Aortic Aneurysm
用于胸主动脉瘤自动 3D 评估的血管变形测绘 (VDM)
  • 批准号:
    10409547
  • 财政年份:
    2019
  • 资助金额:
    $ 68.84万
  • 项目类别:

相似海外基金

Disease Analysis Based on Respiratory Displacement Estimation to All-field of Lung from Thoracic 4D-MRI and Fusion with CT
基于胸部 4D-MRI 肺部全视野呼吸位移估计并与 CT 融合的疾病分析
  • 批准号:
    22K18181
  • 财政年份:
    2022
  • 资助金额:
    $ 68.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Identifying risk factors for the post replacement-related complications following aortic valve replacement in patients with severe aortic valve stenosis with 4D-MRI blood flow dynamics imaging.
通过 4D-MRI 血流动力学成像识别严重主动脉瓣狭窄患者主动脉瓣置换术后相关并发症的危险因素。
  • 批准号:
    19K17510
  • 财政年份:
    2019
  • 资助金额:
    $ 68.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
  • 批准号:
    9980333
  • 财政年份:
    2019
  • 资助金额:
    $ 68.84万
  • 项目类别:
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
  • 批准号:
    10204956
  • 财政年份:
    2019
  • 资助金额:
    $ 68.84万
  • 项目类别:
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
  • 批准号:
    10653082
  • 财政年份:
    2019
  • 资助金额:
    $ 68.84万
  • 项目类别:
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
  • 批准号:
    10413106
  • 财政年份:
    2019
  • 资助金额:
    $ 68.84万
  • 项目类别:
Numerical Prediction and Measurement of Infrarenal Abdominal Aortic Aneurysm Blood Flow using 4D MRI
使用 4D MRI 进行肾下腹主动脉瘤血流的数值预测和测量
  • 批准号:
    511305-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 68.84万
  • 项目类别:
    University Undergraduate Student Research Awards
Tongue muscle function after cancer surgery using 4D MRI, DTI, and MR tagging
使用 4D MRI、DTI 和 MR 标记评估癌症手术后的舌肌功能
  • 批准号:
    8943325
  • 财政年份:
    2015
  • 资助金额:
    $ 68.84万
  • 项目类别:
Developement of 4D MRI microscopy for monitoring growth process of rhizome axillary bud
开发用于监测根茎腋芽生长过程的4D MRI显微镜
  • 批准号:
    15K04719
  • 财政年份:
    2015
  • 资助金额:
    $ 68.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Tongue muscle function after cancer surgery using 4D MRI, DTI, and MR tagging
使用 4D MRI、DTI 和 MR 标记评估癌症手术后的舌肌功能
  • 批准号:
    9319686
  • 财政年份:
    2015
  • 资助金额:
    $ 68.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了