Non-invasive hemodynamic and biomechanic imaging methods for early risk prediction in aortic dissection
用于主动脉夹层早期风险预测的非侵入性血流动力学和生物力学成像方法
基本信息
- 批准号:10716472
- 负责人:
- 金额:$ 68.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional4D MRIAcuteAdverse eventAnatomyAngiographyAortaAortic AneurysmAortic RuptureBehaviorBiological MarkersBiomechanicsBlood flowCardiacCaringCessation of lifeCharacteristicsChestChronicChronic PhaseClinicalClinical Assessment ToolCompensationCountryDataDevelopmentDiameterDiseaseDisease ProgressionDissectionEmerging TechnologiesEnrollmentEquilibriumEvaluationEvolutionFollow-Up StudiesFunctional ImagingFunctional disorderGoalsGrowthHospitalsImageImage AnalysisImaging TechniquesInterventionLifeMachine LearningMagnetic Resonance ImagingMapsMeasurementMeasuresMedicalMedical ImagingMedicineMethodsMichiganMotivationOperative Surgical ProceduresOutcomePatient RecruitmentsPatientsPeriodicityPhasePhysicsPlayPositioning AttributeProcessPrognosisPulsatile FlowRiskRisk EstimateRoleRuptureScanningStatistical ModelsTechniquesTechnology AssessmentTimeTissuesUnnecessary ProceduresWorkX-Ray Computed Tomographybiomedical referral centercostexperiencefollow-uphemodynamicshigh riskimaging biomarkerimaging modalityimprovedindividualized medicineinnovationlongitudinal, prospective studyminimally invasivemortalitynon-invasive imagingnovelovertreatmentpatient populationpersonalized predictionspersonalized risk predictionpredictive toolspressureprimary outcomeprospectiverepairedrisk predictionspatiotemporaltreatment strategy
项目摘要
PROJECT SUMMARY/ABSTRACT
Aortic dissection (AD) is a disease characterized by sudden tearing of the inner layers of the aortic wall creating
a false lumen (FL) channeling aortic blood flow. The vast majority of acute AD patients survive into the chronic
phase, although long-term outcomes are poor with about 50% of patients experiencing aorta-related mortality or
requiring surgical repair by 10 years. A major contributor to poor long-term outcomes is growth of the FL. Thoracic
endovascular aortic repair (TEVAR) is a minimally invasive surgical therapy which can halt FL growth and reduce
AD mortality; however, this treatment comes with cost, risk of procedural complications, and is less effective over
time owing to increased tissue stiffness. Accurate prediction of disease trajectory at early phases is limited with
current metrics but is highly desirable as this would allow TEVAR to be targeted to high-risk patients in a timely
manner, sparing those at lower risk from potentially unnecessary procedures. Current methods for estimating
risk in AD are largely based on anatomic metrics (e.g., aortic diameter), which poorly capture functional aspects
of AD. To overcome these limitations, we propose to apply advanced imaging techniques, namely 4D Flow
magnetic resonance imaging (MRI) and 4D computed tomography angiography (CTA), to characterize and
quantify functional processes such as FL pressure and FL wall stiffness, which elude current imaging approches
and have been implicated as important factors in predicting long-term behavior of AD. We hypothesize that
assessments of these functional metrics will, improve our prediction of false lumen growth rate (FLGR) compared
to standard anatomic metrics. We plan to prospectively recruit patients with either uncomplicated type B (n=30)
or surgically repaired type A (n=45) aortic dissection to undergo baseline 4D Flow and 4D CTA imaging in the
subacute period (1-3 months post-dissection) as well as follow-up studies at 1- and 2-years post-dissection, with
the primary outcome being FLGR. To achieve these goals, the Aims of this proposal are: 1) Identify baseline
hemodynamic and biomechanical metrics in the subacute period of AD that predict FL growth rate over time. FL
pressure will be quantified from 4D Flow MRI using indirect and direct methods based on physics-based image
analysis, with regional FL wall stiffness quantified by merging FL pressure with cyclic aortic wall deformation by
4D CT; 2) Determine the trajectories of functional metrics over time that best predict progressive FL growth.
Longitudinal changes in pressure and wall stiffness between baseline and 1- and 2-year follow-up scans will be
assessed to identify patients who achieve a new equilibrium versus those who continue to progress; 3) Develop
a clinical assessment tool to predict risk of progressive FL growth combining functional metrics, anatomic
parameters and patient characteristics with a focus on simplicity and accuracy for dissection-type specific
prediction of the FLGR at the earliest possible time point. This work seeks to shift the paradigm of AD assessment
from pure anatomic characterization by integrating functional imaging biomarkers to provide accurate predictions
of disease trajectory and allow for optimal determination of surgical candidacy and timing.
项目摘要/摘要
主动脉夹层(AD)是一种以主动脉壁内层突然撕裂为特征的疾病
引导主动脉血流的假腔(FL)。绝大多数急性AD患者存活到慢性
阶段,尽管长期结果很差,大约50%的患者经历了与主动脉相关的死亡或
需要在10年前进行手术修复。长期结果不佳的一个主要因素是FL的增长。胸腔
主动脉腔内修复术(TEVAR)是一种可以阻止FL生长和减少FL的微创外科治疗方法
AD死亡率;然而,这种治疗伴随着成本、程序并发症的风险,并且在
由于组织硬度增加而延长的时间。在早期阶段对疾病轨迹的准确预测受限于
目前的指标,但非常可取,因为这将使TEVAR能够及时针对高危患者
方式,使那些风险较低的人免于可能不必要的程序。当前的估算方法
AD的风险在很大程度上是基于解剖指标(例如,主动脉直径),这不能很好地反映功能方面
公元一代的。为了克服这些限制,我们建议应用先进的成像技术,即4D Flow
磁共振成像(MRI)和4D计算机断层血管成像(CTA),以表征和
量化功能过程,如FL压力和FL壁硬度,这些过程避开了电流成像方法
已被认为是预测AD长期行为的重要因素。我们假设
对这些功能指标的评估将改善我们对假腔增长率(FLGR)的预测
到标准的解剖学指标。我们计划前瞻性地招募无并发症的B型患者(n=30)。
或手术修复的A型(n=45)主动脉夹层接受基线4D血流和4D CTA成像
亚急性期(解剖后1-3个月)以及解剖后1年和2年的随访研究,
主要结果是胎盘生长迟缓。为实现这些目标,本提案的目的是:1)确定基线
AD亚急性期的血流动力学和生物力学指标可预测FL随时间的增长速度。平面
将使用基于物理图像的间接和直接方法从4D Flow MRI中量化压力
通过合并FL压力和循环主动脉壁变形来量化局部FL壁硬度
4DCT;2)确定功能指标随时间的变化轨迹,以最好地预测FL的进行性增长。
基线和1-2年随访扫描之间的压力和室壁硬度的纵向变化将是
评估以确定达到新平衡的患者与继续进步的患者;3)发展
一种结合功能指标、解剖学指标预测进行性FL生长风险的临床评估工具
参数和患者特征,侧重于简单和准确的解剖类型特定
在可能的最早时间点预测FLGR。这项工作旨在改变AD评估的范式
通过集成功能成像生物标记物提供准确的预测,从纯粹的解剖表征
疾病轨迹,并考虑到手术候选和时机的最佳确定。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
lGeneralized super-resolution 4D Flow MRI-using ensemble learning to extend across the cardiovascular system.
l 广义超分辨率 4D Flow MRI - 使用集成学习扩展到整个心血管系统。
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ericsson,Leon;Hjalmarsson,Adam;Akbar,MuhammadUsman;Ferdian,Edward;Bonini,Mia;Hardy,Brandon;Schollenberger,Jonas;Aristova,Maria;Winter,Patrick;Burris,Nicholas;Fyrdahl,Alexander;Sigfridsson,Andreas;Schnell,Susanne;Figueroa,CAlbe
- 通讯作者:Figueroa,CAlbe
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Scott Burris其他文献
Nicholas Scott Burris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Scott Burris', 18)}}的其他基金
Vascular Deformation Mapping (VDM) for Automated, 3D Assessment of Thoracic Aortic Aneurysm
用于胸主动脉瘤自动 3D 评估的血管变形测绘 (VDM)
- 批准号:
10409547 - 财政年份:2019
- 资助金额:
$ 68.84万 - 项目类别:
相似海外基金
Disease Analysis Based on Respiratory Displacement Estimation to All-field of Lung from Thoracic 4D-MRI and Fusion with CT
基于胸部 4D-MRI 肺部全视野呼吸位移估计并与 CT 融合的疾病分析
- 批准号:
22K18181 - 财政年份:2022
- 资助金额:
$ 68.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identifying risk factors for the post replacement-related complications following aortic valve replacement in patients with severe aortic valve stenosis with 4D-MRI blood flow dynamics imaging.
通过 4D-MRI 血流动力学成像识别严重主动脉瓣狭窄患者主动脉瓣置换术后相关并发症的危险因素。
- 批准号:
19K17510 - 财政年份:2019
- 资助金额:
$ 68.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
- 批准号:
9980333 - 财政年份:2019
- 资助金额:
$ 68.84万 - 项目类别:
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
- 批准号:
10204956 - 财政年份:2019
- 资助金额:
$ 68.84万 - 项目类别:
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
- 批准号:
10653082 - 财政年份:2019
- 资助金额:
$ 68.84万 - 项目类别:
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
- 批准号:
10413106 - 财政年份:2019
- 资助金额:
$ 68.84万 - 项目类别:
Numerical Prediction and Measurement of Infrarenal Abdominal Aortic Aneurysm Blood Flow using 4D MRI
使用 4D MRI 进行肾下腹主动脉瘤血流的数值预测和测量
- 批准号:
511305-2017 - 财政年份:2017
- 资助金额:
$ 68.84万 - 项目类别:
University Undergraduate Student Research Awards
Tongue muscle function after cancer surgery using 4D MRI, DTI, and MR tagging
使用 4D MRI、DTI 和 MR 标记评估癌症手术后的舌肌功能
- 批准号:
8943325 - 财政年份:2015
- 资助金额:
$ 68.84万 - 项目类别:
Developement of 4D MRI microscopy for monitoring growth process of rhizome axillary bud
开发用于监测根茎腋芽生长过程的4D MRI显微镜
- 批准号:
15K04719 - 财政年份:2015
- 资助金额:
$ 68.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Tongue muscle function after cancer surgery using 4D MRI, DTI, and MR tagging
使用 4D MRI、DTI 和 MR 标记评估癌症手术后的舌肌功能
- 批准号:
9319686 - 财政年份:2015
- 资助金额:
$ 68.84万 - 项目类别:














{{item.name}}会员




