The Application of Deep Learning Methods for Proximal Humerus Fracture Feature Identification
深度学习方法在肱骨近端骨折特征识别中的应用
基本信息
- 批准号:10714170
- 负责人:
- 金额:$ 20.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAdoptionAdultArchivesAreaCaringCenters of Research ExcellenceCessation of lifeCharacteristicsClassificationClinical Practice GuidelineComplexComputer ModelsComputer-Assisted Image AnalysisComputersConsultDataData SetDecision MakingDevelopmentDiagnosisDiagnostic ImagingDislocationsE-learningElderlyElectronic Health RecordEvidence based treatmentFoundationsFractureFutureGenerationsGoalsHealthHumeral FracturesImageImage AnalysisIndividualInformaticsInjuryJointsLabelLocationMedical RecordsMethodsModelingNeural Network SimulationOperative Surgical ProceduresOrthopedicsOutcomePainPatient-Focused OutcomesPatientsPatternPerformancePersistent painPhysiciansProcessQuality of CareROC CurveRecommendationRecordsReportingResearchRoentgen RaysShoulderSpecialistStandardizationSurgeonSurgical complicationSystemTestingTrainingTraumaTreatment EffectivenessUnited StatesValidationWorkX-Ray Medical Imagingclinical careclinical practiceclinically relevantdeep learningdeep learning modeldeep neural networkdisabilityelectronic health record systemevidence based guidelinesexperienceimprovedindividual patientinterestlearning strategypersonalized medicinepractice settingprismaprognostic valueresearch and developmenttherapy developmenttreatment choiceusability
项目摘要
SUMMARY
Proximal humerus fractures (PHFs) are the third most common fracture in the elderly, with an estimated 200,000
occurring each year in the United States. PHFs can lead to pain, poor shoulder function, plus short and long-
term disability for patients. Substantial controversy persists regarding initial treatment for elderly adults with this
injury. PHFs can be managed conservatively or surgically and great controversy exists over which patients
should be treated surgically. A unique challenge with PHFs is that they have variable presentation and range in
complexity. Unlike the management of other major joint fractures, the initial treatment choice for PHF is highly
dependent on the fracture characteristics. Treatment effectiveness evidence is needed to guide clinical care for
individual patients with PHF. The Neer Classification, first developed in 1970, is the most widely used framework
to describe and classify PHFs. Although the Neer Classification is the most widely used in practice, it is outdated,
incomplete, often incorrectly applied, and suffers from poor interobserver reliability. The absence of a universally
accepted, standardized fracture classification system is a critical barrier in the development of treatment
effectiveness evidence for PHF. The application of deep learning (DL) computational models can automate and
standardize the fracture classification process and identify all relevant fracture characteristics. DL image analysis
models have been shown to be highly accurate at identifying features of interest on diagnostic images. An
automated, standardized PHF classification system will enhance our ability to universally standardize fracture
classification across all orthopaedic clinical care settings, improve the precision and efficiency in fracture care
and generate treatment effectiveness evidence to guide clinical practice. The overall objective for this application,
is to develop and validate a DL computational model capable of identifying fracture features using X-ray images.
Our central hypothesis is that we can develop a DL model that will be as accurate as expert shoulder specialists
in identifying important fracture features on X-ray images. In Aim 1 we will modify the Neer Classification
framework for fracture feature identification. Aim 2 will be the development of a gold standard dataset for deep
learning DL fracture feature identification, and finally Aim 3 will be the training and testing of a DL model to
identify fracture features on X-rays.
总结
肱骨近端骨折(PHF)是老年人中第三常见的骨折,估计有20万
每年都发生在美国。PHF会导致疼痛,肩关节功能差,加上短和长-
长期残疾患者。关于老年人的初始治疗存在大量争议,
损伤PHF可以通过保守治疗或手术治疗,对于哪些患者存在很大争议
应该手术治疗PHF的一个独特挑战是,它们具有可变的呈现方式和范围,
复杂性与其他主要关节骨折的治疗不同,PHF的初始治疗选择是高度保守的。
这取决于断裂特征。需要治疗有效性证据来指导临床护理,
个别PHF患者。1970年首次开发的Neer分类是最广泛使用的框架
描述和分类PHF。尽管Neer分类法在实践中使用最广泛,但它已经过时,
不完整,经常被错误地应用,并且观察者之间的可靠性差。没有一个普遍
公认的、标准化的骨折分类系统是治疗发展的关键障碍
PHF的有效性证据。深度学习(DL)计算模型的应用可以自动化,
规范骨折分类过程并识别所有相关骨折特征。DL图像分析
模型在识别诊断图像上感兴趣的特征时已经显示出高度准确。一个
自动化、标准化的PHF分类系统将增强我们普遍标准化骨折的能力
在所有骨科临床护理环境中进行分类,提高骨折护理的精度和效率
并产生治疗有效性证据以指导临床实践。本申请的总体目标是,
是开发和验证能够使用X射线图像识别裂缝特征的DL计算模型。
我们的中心假设是,我们可以开发一个DL模型,将作为专家肩专家准确
在X光图像上识别重要的骨折特征。在目标1中,我们将修改Neer分类
裂缝特征识别框架。目标2将是开发一个黄金标准数据集,
学习DL裂缝特征识别,最后目标3将是DL模型的训练和测试,
在X光片上识别骨折特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Bauer Floyd其他文献
Sarah Bauer Floyd的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Bauer Floyd', 18)}}的其他基金
The Development of an EHR-based Measure of Orthopaedic Treatment Success
开发基于 EHR 的骨科治疗成功衡量标准
- 批准号:
10508686 - 财政年份:2022
- 资助金额:
$ 20.78万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 20.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 20.78万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 20.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 20.78万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 20.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 20.78万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 20.78万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 20.78万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 20.78万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 20.78万 - 项目类别:
Standard Grant