Protein Surface Mapping: Experimentation and Computation

蛋白质表面绘图:实验和计算

基本信息

项目摘要

DESCRIPTION (provided by applicant): The proposed research is directed at demonstration of a protein surface mapping technique based on novel chemical labeling methods that can be combined with high resolution mass spectrometric characterization to identify surface accessible amino acids residues in native-folded proteins. This information then will be utilized in an integrated fashion with computational structural prediction methods to enhance their accuracies and throughput. If successful, this method could enhance dramatically the structural characterization throughput (albeit at moderate resolution) of a wide range of proteins, and provide critical input into the refinement of computational prediction methods. To achieve this goal, four specific aims are proposed. Specific Aim 1 focuses on formulation and characterization of an experimental surface mapping protocol that includes a toolbox of labeling reagents for protein structural determinations. We propose to optimize our radical labeling approach by defining the experimental parameters for quantitative labeling, background reduction, and alternate reagent development. The goal of this task will be to develop an experimental toolbox for labeling that includes a variety of reagents. Specific Aim 2 is directed toward demonstration of the surface mapping technique for large proteins and protein mixtures, two areas that are difficult for XRC and NMR techniques to examine. Specific Aim 3 involves demonstration of the surface mapping technique for characterizing protein conformational changes, to illustrate how this experimental approach can provide more than only low resolution structural information. Specific Aim 4 seeks to integrate surface mapping data as experimental constraints for computational protein structural prediction, involving both protein threading algorithms (PROSPECT) and ab initio methods (Rosetta). One favorable outcome if the proposed experimental approach is successful is the large amount of structural data at moderate resolution that can be generated from protein mixtures. At present, this experimental capability is non-existent.
描述(由申请人提供):拟议的研究旨在证明基于新型化学标记方法的蛋白质表面作图技术,该技术可与高分辨率质谱表征相结合,以识别天然折叠蛋白质中的表面可及氨基酸残基。然后,这些信息将与计算结构预测方法以集成的方式使用,以提高其准确性和吞吐量。如果成功的话,这种方法可以显着提高结构表征的吞吐量(虽然在中等分辨率)的蛋白质范围广泛,并提供关键输入到计算预测方法的改进。为实现这一目标,提出了四个具体目标。具体目标1侧重于制定和表征的实验表面映射协议,其中包括一个工具箱的标记试剂的蛋白质结构测定。我们建议通过定义定量标记、背景降低和替代试剂开发的实验参数来优化我们的自由基标记方法。这项任务的目标将是开发一个实验工具箱,包括各种试剂的标记。具体目标2是针对大型蛋白质和蛋白质混合物的表面映射技术的演示,这两个领域是XRC和NMR技术难以检查的。具体目标3涉及用于表征蛋白质构象变化的表面映射技术的演示,以说明这种实验方法如何提供不仅仅是低分辨率的结构信息。具体目标4旨在整合表面映射数据作为计算蛋白质结构预测的实验约束,涉及蛋白质线程算法(前景)和从头算方法(Rosetta)。如果所提出的实验方法是成功的,一个有利的结果是可以从蛋白质混合物中产生大量的中等分辨率的结构数据。目前,这种实验能力是不存在的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ROBERT L. HETTICH其他文献

ROBERT L. HETTICH的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ROBERT L. HETTICH', 18)}}的其他基金

Protein Surface Mapping: Experimentation and Computation
蛋白质表面绘图:实验和计算
  • 批准号:
    7432548
  • 财政年份:
    2005
  • 资助金额:
    $ 24.05万
  • 项目类别:
Protein Surface Mapping: Experimentation and Computation
蛋白质表面绘图:实验和计算
  • 批准号:
    6919619
  • 财政年份:
    2005
  • 资助金额:
    $ 24.05万
  • 项目类别:
Protein Surface Mapping: Experimentation and Computation
蛋白质表面绘图:实验和计算
  • 批准号:
    7067112
  • 财政年份:
    2005
  • 资助金额:
    $ 24.05万
  • 项目类别:

相似海外基金

Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
  • 批准号:
    BB/Y006380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
  • 批准号:
    24K17112
  • 财政年份:
    2024
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
  • 批准号:
    2300890
  • 财政年份:
    2023
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Continuing Grant
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
  • 批准号:
    23K06918
  • 财政年份:
    2023
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
  • 批准号:
    23K05758
  • 财政年份:
    2023
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
  • 批准号:
    23K04668
  • 财政年份:
    2023
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
  • 批准号:
    2888395
  • 财政年份:
    2023
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Studentship
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
  • 批准号:
    10761044
  • 财政年份:
    2023
  • 资助金额:
    $ 24.05万
  • 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
  • 批准号:
    10728925
  • 财政年份:
    2023
  • 资助金额:
    $ 24.05万
  • 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
  • 批准号:
    10757309
  • 财政年份:
    2023
  • 资助金额:
    $ 24.05万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了