Developing and Evaluating Multi-Modal Clinical Diagnostic Reasoning Models for Automated Diagnosis Generation

开发和评估用于自动诊断生成的多模式临床诊断推理模型

基本信息

  • 批准号:
    10724044
  • 负责人:
  • 金额:
    $ 8.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT ABSTRACT Diagnostic errors affect 12 million patients in the U.S. and contribute to 80,000 deaths per year. The main causes for diagnostic errors include cognitive biases introduced by healthcare providers, miscommunication between healthcare teams, lack of access to key data, and not recognizing time-sensitive data in the electronic health record (EHR). The cognitive burden from information overload in the EHR cause clinicians to take decisional shortcuts with biased heuristics and miss critical data in the EHR, leading to missed opportunities for timely and accurate diagnoses. Artificial Intelligence (AI) and clinical Natural Language Processing (cNLP) provide opportunity to help understand medical text and can automate EHR analysis, pointing to the promising direction of invoking medical knowledge and clinical experience as humans do. However, the majority of the cNLP tasks are not designed for bedside application to generate diagnoses and augment bedside decision-making. We have have gathered preliminary data and designed cNLP benchmark tasks for clinical diagnostic reasoning. Our tasks address key cognitive processes to build models in this proposal that can synthesize EHR data to generate diagnoses that align with evidence-based medicine and medical knowledge representation. The proposal aims to develop novel cNLP models that understand and integrate multi-modal EHR data, and conduct reasoning over a large-scale medical knowledge base to build a model that provides higher accuracy than current neural network models. I will first develop a multi-modal generative model that reads in both structured and unstructured EHR data to output diagnoses using a two-stage training process (Aim 1). In a separate aim, I will construct a knowledge base using a neural symbolic approach from medical concepts and relations sourced from the National Library of Medicine's Unified Medical Language System (UMLS). The knowledge base will be part of the model to generate diagnoses given the information from a daily care note collected in the EHR (Aim 2). The third aim will design and pilot a clinical diagnostic decision support system using human-centered design principles. The best models from Aims 1 and 2 will be evaluated for diagnostic accuracy by clinicians in the system using previously validated instruments for patient safety and diagnostic error (Aim 3). Completion of the aims will inform future clinical studies on developing NLP-driven clinical decision support tools for reducing diagnostic error. I will complete this project under the direct supervision of my co-mentors and advisors who have expertise in developing clinical neural language models, implementation of AI-driven tools in health systems, and clinical decision support systems with augmented intelligence. Together, this multidisciplinary team brings nationally renowned expertise in clinical informatics with a track record of successful mentorship. My 4-year proposal with intensive mentorship, clinical research training, formal coursework in health systems engineering and informatics, and computing resources at the University of Wisconsin-Madison will ensure my success as I grow into an independent scientist.
项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yanjun Gao其他文献

Yanjun Gao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10707830
  • 财政年份:
    2023
  • 资助金额:
    $ 8.75万
  • 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
  • 批准号:
    479728
  • 财政年份:
    2023
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
  • 批准号:
    10884567
  • 财政年份:
    2023
  • 资助金额:
    $ 8.75万
  • 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
  • 批准号:
    10751964
  • 财政年份:
    2023
  • 资助金额:
    $ 8.75万
  • 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
  • 批准号:
    486321
  • 财政年份:
    2022
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10676786
  • 财政年份:
    2022
  • 资助金额:
    $ 8.75万
  • 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10440970
  • 财政年份:
    2022
  • 资助金额:
    $ 8.75万
  • 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
  • 批准号:
    10642998
  • 财政年份:
    2022
  • 资助金额:
    $ 8.75万
  • 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10482465
  • 财政年份:
    2022
  • 资助金额:
    $ 8.75万
  • 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
  • 批准号:
    10191053
  • 财政年份:
    2020
  • 资助金额:
    $ 8.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了