Automatic identification of early bone loss patterns from radiographs invisible to human eyes for early periodontal disease diagnosis and prevention

从人眼看不见的射线照片中自动识别早期骨质流失模式,用于早期牙周病的诊断和预防

基本信息

  • 批准号:
    10723693
  • 负责人:
  • 金额:
    $ 16.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2028-08-31
  • 项目状态:
    未结题

项目摘要

Abstract: Periodontitis is the second most prevalent but preventable dental disease affecting over 64 million Americans and responsible for tooth loss, functionality limitations, pain, and poor quality of life. Thus, early diagnosis and preventive therapeutics are imperative in clinical practice to prevent disease initiation and progression. However, by the time dentists can observe the first bone loss patterns in radiographs to diagnose periodontitis, 30-50% deterioration (periodontal bone damage) has already occurred, which is not visible to human eyes. Clinical decision support systems are designed to identify high-risk periodontitis patients for prevention; however, they are not widely used in clinical practice because of the suboptimal prediction performance and lack of diverse predictive features (early bone loss lesions) for prediction. Therefore, there is an unmet need for a tool that can detect early bone loss patterns invisible to human eyes to alert dentists for early diagnosis and preventive care. Dr. Patel has developed an artificial intelligence (AI) empowered prediction model for periodontitis that utilizes more than 150 distinct variables (e.g., social determinants of health, medical records, lab reports, CDC census data, financial data, etc.) for prediction, which aren't well understood in the existing literature. However, this model lacks dental imaging data such as bone pattern, bone density, pixel intensity, and other imaging predictive features, which have a high potential to improve prediction accuracy. The early bone mineral changes in alveolar bone for early diagnosis have been studied in biological studies; however, the transition of these findings at the chairside is limited. AI and computer vision can bridge this gap and help identify early bone loss patterns from radiographs invisible to human eyes. Therefore, the objective of this project is to develop three automated computer vision algorithms: 1) to improve the extraction of diagnostically meaningful information from periapical radiographs, 2) to determine the extent of bone loss information from radiographs, and 3) build a prediction model to identify early bone loss patterns from radiographs before disease initiation and progression. Enhanced and consistent radiographs will improve diagnostic accuracy & reduce radiographic exposure, automatic bone loss measurement will reduce diagnostic discrepancies, and early bone loss detection will identify high-risk patients to take preventive approaches. The candidate, Dr. Patel's goal is to become an independent PI in dental informatics and develop cutting-edge technologies to generate practice- based evidence (using data-driven methods) to improve patient care and outcomes. A funded K08 proposal will allow Dr. Patel to develop the skills necessary to complete the proposed research (training in computer vision & radiology) and become an independent research scientist (training in didactic mentoring, lecturing, & grantsmanship). Dr. Patel has formed a team of five mentors with expertise in clinical dentistry, computer vision, radiology, and periodontology to provide high-quality, diverse scientific, collegial support and state-of-the-art facilities to ensure the successful completion of this proposed career development goals and research program.
摘要:牙周炎是第二大常见但可预防的牙科疾病,影响超过 6400 万人 美国人对牙齿脱落、功能受限、疼痛和生活质量差负有责任。于是,早 诊断和预防性治疗在临床实践中至关重要,以防止疾病的发生和发生 进展。然而,当牙医可以通过放射线照片观察到第一个骨质流失模式来诊断时 牙周炎,30-50%的恶化(牙周骨损伤)已经发生,这是肉眼看不见的 人类的眼睛。临床决策支持系统旨在识别高危牙周炎患者 预防;然而,由于预测效果不佳,它们并未广泛应用于临床实践 表现和缺乏不同的预测特征(早期骨丢失病变)进行预测。因此,有 对一种工具的需求尚未得到满足,该工具可以检测人眼看不见的早期骨质流失模式,以提醒牙医注意 早期诊断和预防性护理。 Patel 博士开发了一种人工智能 (AI) 赋能预测 牙周炎模型利用 150 多个不同变量(例如健康的社会决定因素、医疗 记录、实验室报告、CDC 人口普查数据、财务数据等)进行预测,这些在 现有文献。然而该模型缺乏骨形态、骨密度、像素等牙科影像数据 强度和其他成像预测特征,这些特征很有可能提高预测精度。这 生物学研究已经研究了牙槽骨的早期骨矿物质变化以进行早期诊断;然而, 这些调查结果在主席期间的转变是有限的。人工智能和计算机视觉可以弥补这一差距并提供帮助 从人眼看不见的射线照片中识别早期骨质流失模式。因此,该项目的目标 是开发三种自动化计算机视觉算法:1)改进诊断性的提取 来自根尖X线照片的有意义的信息,2)确定骨丢失的程度信息 X 光片,3) 建立一个预测模型,从疾病前的 X 光片中识别早期骨质流失模式 启动和进展。增强且一致的射线照片将提高诊断准确性并减少 射线照相曝光、自动骨质流失测量将减少诊断差异,以及早期骨质流失 丢失检测将识别高风险患者以采取预防措施。帕特尔博士候选人的目标是 成为牙科信息学领域的独立 PI 并开发尖端技术以产生实践- 基于证据(使用数据驱动的方法)来改善患者护理和结果。受资助的 K08 提案将 让帕特尔博士发展完成拟议研究所需的技能(计算机视觉和 放射学)并成为一名独立研究科学家(接受教学指导、讲座和培训) 赠款)。 Patel 博士组建了一个由五位导师组成的团队,他们在临床牙科、计算机视觉、 放射学和牙周病学提供高质量、多样化的科学、学术支持和最先进的 确保成功完成拟议的职业发展目标和研究计划的设施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jay Patel其他文献

Jay Patel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.09万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 16.09万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 16.09万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.09万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 16.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.09万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 16.09万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 16.09万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 16.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 16.09万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了