Understanding ethno-racial differences in AT(N)-defined heterogeneity profiles
了解 AT(N) 定义的异质性概况中的民族差异
基本信息
- 批准号:10723248
- 负责人:
- 金额:$ 12.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcculturationAffectAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAlzheimer’s disease biomarkerAmyloidAreaAtrophicBiological MarkersBlack PopulationsBrain imagingBrain regionClassificationClinicalClinical TrialsCognitiveCommunitiesCommunity HealthDataDiseaseEducationEthnic OriginGeneticGenotypeGoalsHealthHeterogeneityHippocampusHouseholdImageIncomeIndividualInvestigationLateralLiquid substanceLiteratureMachine LearningMagnetic Resonance ImagingMeasuresMedialMediatingMentorsMexican AmericansNational Institute on AgingNerve DegenerationNeuroanatomyNot Hispanic or LatinoOutcomeParietalPathogenesisPathologicPatternPhasePopulation HeterogeneityPositioning AttributePositron-Emission TomographyRegional DiseaseResearchResearch PersonnelResourcesSamplingSocioeconomic StatusTrainingUnderrepresented MinorityWorkaging brainapolipoprotein E-4cerebral atrophyclinical heterogeneitycohortdeprivationdesigndisease heterogeneitydiverse dataethnic diversityethnoracialethnoracial disparityfollow-upfunctional outcomeshealth disparityimaging biomarkerindexingindividualized medicinemachine learning methodmulti-racialneuroimagingneuroimaging markerprecision medicineracial differenceracial diversityrecruitsocialsocial health determinantsstemstructural determinantstau Proteinstau aggregation
项目摘要
PROJECT ABSTRACT
Alzheimer disease (AD) is a highly heterogeneous disorder which varies in presentation within and across
diverse communities and backgrounds. Neuroanatomically, heterogeneity is observed in the topographical
patterns of amyloid (A), tau (T), and neurodegeneration (N) markers used to stage AD. For example, patterns
of tau accumulation and brain atrophy are highly correlated and have been subtyped by advanced multivariate
and machine learning methods into those involving typical AD regions (e.g., medial-temporal, lateral
temporoparietal), hippocampal-sparing, limbic-predominant regions or minimal atrophy, while amyloid
accumulation can be subtyped into frontal, parietal, and occipital regions. Notably, spatial subtypes are
associated with distinct cognitive, genetic (e.g., APOE e4 genotype), and fluid biomarker profiles, thus
suggesting that clinical heterogeneity may in part stem from neuroanatomical heterogeneity. Although
neuroanatomical heterogeneity in AD has important implications for cognitive and functional outcomes as well
as patient-specific treatments, there is a large gap in the literature regarding AD biomarker topographical
patterns in ethno-racial groups. Similarly, it is largely unknown to what extent structural and social
determinants of health (SSDOH) affect heterogeneity. The present study fills a critical gap in the literature by
including under-represented minorities and relevant SSDOH factors in the investigation of heterogeneity in
AT(N) imaging markers.
Using data from the racially and ethnically diverse Health and Aging Brain Study –
Health Disparities (HABS-HD), this study will
A) determine AD heterogeneity profiles (i.e., spatial subtypes and
magnitude) for A, T, and N neuroimaging markers (i.e., magnetic resonance imaging [MRI], amyloid and tau
positron emission tomography [PET]) using a machine learning approach; B) assess within and between group
differences in heterogeneity profiles across Mexican-Americans, Blacks, and non-Hispanic Whites (NHW); and
C) assess overall effects of SSDOH (e.g., area deprivation index, acculturation, education etc.) on A, T, and N
heterogeneity profiles within and between ethno-racial groups. Biomarker cut-points and group-level
composites used to classify individuals in research and clinical settings are often informed through the
identification of AD-specific or AD-vulnerable brain regions. However, the identified AD-sensitive regions and
associated cut-points are typically derived from one group (i.e., NHWs) and applied to all. Characterizing
heterogeneity in AT(N) imaging markers using a diverse and representative sample is therefore crucial to
informing whether AD-sensitive regions are similar across individuals and thus whether current cut-points are
appropriate.
项目摘要
阿尔茨海默病(AD)是一种高度异质性的疾病,其内部和跨领域的表现各不相同
不同的社区和背景。在神经解剖学上,在局部观察到了异质性。
用于AD分期的淀粉样蛋白(A)、tau(T)和神经变性(N)标记物的模式。例如,模式
Tau的积聚与脑萎缩高度相关,并已通过高级多变量进行亚型划分
和机器学习方法到涉及典型AD区域的那些(例如,内侧-颞侧、侧向
顶叶),保留海马区,边缘优势区或轻度萎缩,而淀粉样蛋白
积聚可分为额区、顶区和枕区。值得注意的是,空间子类型是
与不同的认知、遗传(例如APOE e4基因)和流体生物标志物特征相关联,因此
提示临床的异质性可能部分源于神经解剖学的异质性。虽然
阿尔茨海默病的神经解剖异质性对认知和功能结果也有重要影响
作为针对患者的治疗,关于AD生物标记物的地形学方面的文献有很大的差距
种族群体中的模式。同样,结构性和社会性在多大程度上也不得而知。
健康决定因素(SSDOH)影响异质性。目前的研究填补了文献中的一个关键空白
将代表不足的少数群体和相关的SSDOH因素纳入#年异质性调查
在(N)个成像标记物。
使用种族和人种多样化的健康和老龄化大脑研究的数据-
健康差异(HABS-HD),这项研究将
A)确定AD异质性分布(即空间亚型和
A、T和N神经成像标志物(即磁共振成像[MRI]、淀粉样蛋白和tau)的大小
正电子发射断层扫描[PET])使用机器学习方法;B)在组内和组间进行评估
墨西哥裔美国人、黑人和非西班牙裔白人之间的异质性特征差异(NHW);以及
C)评估SSDOH的总体影响(例如,地区剥夺指数、文化适应、教育等)关于A、T和N
种族群体内部和群体之间的异质性概况。生物标记物的切点和组水平
在研究和临床环境中用于对个人进行分类的组合通常通过
识别AD特有的或易受AD影响的脑区。然而,已确定的AD敏感区和
相关的切割点通常来自一组(即,NHW)并应用于所有组。刻画
因此,使用多样化和代表性样本的AT(N)成像标记物的异质性对于
通知AD敏感区在不同个体之间是否相似,从而通知当前切点是否
恰如其分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karin Meeker其他文献
Karin Meeker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 12.69万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 12.69万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 12.69万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 12.69万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 12.69万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 12.69万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 12.69万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




