Enhancing personalized insights into common obstetric disorders using longitudinal deep-phenotyping data

使用纵向深度表型数据增强对常见产科疾病的个性化见解

基本信息

  • 批准号:
    10723841
  • 负责人:
  • 金额:
    $ 14.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-10 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Obstetric disorders are common globally and a major driver for deaths of children under five as well as other lifelong health issues. Despite this we have a limited understanding of the mechanisms driving these disorders highlighting an unmet research gap. Here, we collaborate with Dr. Yoel Sadovsky to compile a deep-phenotyping pregnancy dataset that evaluates women’s health throughout pregnancy providing longitudinal blood and urine multiomics data paired with clinical, survey, behavioral, and environmental data collected from 200 people (100 people with adverse outcomes) providing a comprehensive view of pregnancy. We hypothesize that a data-driven systems biology approach will define normal placental and pregnancy systems biology and facilitate investigation of disease mechanisms in common obstetric disorders including preterm birth, fetal growth restriction and preeclampsia. First, we will evaluate molecular network differences in common obstetric disorders using placental multiomics (metabolomics, proteomics, and transcriptomics) data paired with clinical and placental histopathology data collected from 342 people (213 with common obstetric disorders). We will build inter-omic placental networks across datatypes and outcomes increasing our understanding of placental biology. We will also determine differences in molecular network structures and key transcription factors associated with distinct obstetric disorders. In addition, we will use the deep-phenotyping pregnancy data to evaluate molecular network dynamics and define major transition states of pregnancy. We will also use it to identify disruptions to molecular networks associated with common obstetric disorders. We will also develop a new approach to identify analyte outliers in individuals at the earliest time point of deviation from a healthy pregnancy trajectory, prototyping a precision medicine approach in the context of pregnancy. Finally, we are partnering with Google Data Commons to build an open-source perinatal-specific knowledge graph to distribute the data from this proposal to the broader perinatal research community. Altogether this will generate and prioritize hypotheses of the molecular mechanisms of common obstetric disorders, which will be used to develop future clinical interventions to promote maternal-fetal health. Finally, this work will provide me with the background needed to establish an independent line of research.
项目摘要 产科疾病在全球范围内很常见,是五岁以下儿童死亡的主要原因, 以及其他终身健康问题。尽管如此,我们对 驱动这些疾病的机制突出了未满足的研究差距。在这里,我们合作 与Yoel Sadovsky博士一起编制了一个深度表型妊娠数据集, 提供纵向血液和尿液多组学数据的妇女整个怀孕期间的健康 与从200人(100 有不良后果的人)提供怀孕的全面观点。我们假设 数据驱动的系统生物学方法将定义正常的胎盘和妊娠 系统生物学和促进常见产科疾病机制的调查 疾病包括早产、胎儿生长受限和先兆子痫。一是 使用胎盘评估常见产科疾病的分子网络差异 多组学(代谢组学、蛋白质组学和转录组学)数据与临床和 胎盘组织病理学数据收集自342人(213例常见产科疾病)。 我们将建立跨数据库和结果的组间胎盘网络, 了解胎盘生物学。我们还将确定分子网络的差异 结构和关键转录因子与不同的产科疾病。此外,本发明还提供了一种方法, 我们将使用深度表型妊娠数据来评估分子网络动力学, 定义怀孕的主要过渡状态。我们还将使用它来确定中断, 与常见产科疾病相关的分子网络。我们还将开发新的 在最早的偏离时间点识别个体中分析物离群值的方法 健康的怀孕轨迹,在以下背景下建立精准医疗方法的原型 怀孕最后,我们正在与Google Data Commons合作, 围产期特定的知识图谱,将本提案中的数据分发给更广泛的 围产期研究社区。总之,这将产生和优先考虑的假设, 常见产科疾病的分子机制,这将用于开发未来 临床干预措施,以促进母婴健康。最后,这项工作将为我提供 建立独立研究线所需的背景。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SAMANTHA PIEKOS其他文献

SAMANTHA PIEKOS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 14.28万
  • 项目类别:
    Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 14.28万
  • 项目类别:
    EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    $ 14.28万
  • 项目类别:
    Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.28万
  • 项目类别:
    Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    $ 14.28万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 14.28万
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    $ 14.28万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 14.28万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 14.28万
  • 项目类别:
    Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
  • 批准号:
    23K22068
  • 财政年份:
    2024
  • 资助金额:
    $ 14.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了