Enhancing personalized insights into common obstetric disorders using longitudinal deep-phenotyping data
使用纵向深度表型数据增强对常见产科疾病的个性化见解
基本信息
- 批准号:10723841
- 负责人:
- 金额:$ 14.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-10 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AgingArtificial IntelligenceAutomobile DrivingBehavioralBioinformaticsBiologicalBirthBloodCessation of lifeChildClinicalClinical DataCollaborationsCommunitiesComplexDataData CommonsData ScienceData SetDeveloped CountriesDevelopmentDevelopmental BiologyDiscipline of obstetricsDiseaseDoctor of PhilosophyEarly InterventionEpidemiologyEventFetal DevelopmentFetal Growth RetardationFetal healthFutureGenesGrantHealthHistopathologyIndividualInterventionInvestigationKnowledgeLearningLife StyleMaternal and Child HealthMeasurementMentorsMolecularMultiomic DataNormal RangeOutcomePerinatalPersonsPhenotypePhysiciansPhysiologicalPhysiological ProcessesPhysiologyPlacentaPlacental BiologyPre-EclampsiaPregnancyPremature BirthProcessProteomicsRegulationResearchResourcesRunningStructureSurveysSystemSystems BiologyTimeTissuesTrainingUrineVisualization softwareWomen&aposs HealthWorkadverse outcomeadverse pregnancy outcomecohortdata integrationdifferential expressiondistributed datahealthy pregnancyimprovedinsightknowledge graphmetabolomicsmolecular dynamicsmultiple omicsnovel strategiesopen dataopen sourcephenotypic datapost-doctoral trainingprecision medicineprototypeskillstemporal measurementtranscription factortranscription regulatory networktranscriptomics
项目摘要
PROJECT SUMMARY
Obstetric disorders are common globally and a major driver for deaths of children under five as
well as other lifelong health issues. Despite this we have a limited understanding of the
mechanisms driving these disorders highlighting an unmet research gap. Here, we collaborate
with Dr. Yoel Sadovsky to compile a deep-phenotyping pregnancy dataset that evaluates
women’s health throughout pregnancy providing longitudinal blood and urine multiomics data
paired with clinical, survey, behavioral, and environmental data collected from 200 people (100
people with adverse outcomes) providing a comprehensive view of pregnancy. We hypothesize
that a data-driven systems biology approach will define normal placental and pregnancy
systems biology and facilitate investigation of disease mechanisms in common obstetric
disorders including preterm birth, fetal growth restriction and preeclampsia. First, we will
evaluate molecular network differences in common obstetric disorders using placental
multiomics (metabolomics, proteomics, and transcriptomics) data paired with clinical and
placental histopathology data collected from 342 people (213 with common obstetric disorders).
We will build inter-omic placental networks across datatypes and outcomes increasing our
understanding of placental biology. We will also determine differences in molecular network
structures and key transcription factors associated with distinct obstetric disorders. In addition,
we will use the deep-phenotyping pregnancy data to evaluate molecular network dynamics and
define major transition states of pregnancy. We will also use it to identify disruptions to
molecular networks associated with common obstetric disorders. We will also develop a new
approach to identify analyte outliers in individuals at the earliest time point of deviation from a
healthy pregnancy trajectory, prototyping a precision medicine approach in the context of
pregnancy. Finally, we are partnering with Google Data Commons to build an open-source
perinatal-specific knowledge graph to distribute the data from this proposal to the broader
perinatal research community. Altogether this will generate and prioritize hypotheses of the
molecular mechanisms of common obstetric disorders, which will be used to develop future
clinical interventions to promote maternal-fetal health. Finally, this work will provide me with the
background needed to establish an independent line of research.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAMANTHA PIEKOS其他文献
SAMANTHA PIEKOS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 14.28万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 14.28万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 14.28万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 14.28万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 14.28万 - 项目类别:
Standard Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 14.28万 - 项目类别:
Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 14.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 14.28万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 14.28万 - 项目类别:
EU-Funded
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 14.28万 - 项目类别:
Fellowship