A novel mitochondria-to-lysosome stress signaling pathway in degenerative disease and aging
退行性疾病和衰老中一种新的线粒体到溶酶体应激信号通路
基本信息
- 批准号:10722759
- 负责人:
- 金额:$ 40.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgingAlzheimer&aposs DiseaseAmino AcidsAmyotrophic Lateral SclerosisAtrophicAutophagocytosisBiochemistryBioenergeticsBiologicalBiologyCarrier ProteinsCell AgingCell DeathCell Death InductionCell Membrane PermeabilityCell SurvivalCell physiologyCellsChildCytosolDataDefectDegenerative DisorderDevelopmentDilated CardiomyopathyDiseaseEnergy MetabolismEnvironmentEnzymesFacioscapulohumeral Muscular DystrophyFrontotemporal DementiaFunctional disorderGenesGeneticGoalsHomeostasisHomologous GeneHumanImpairmentIonsLeigh DiseaseLongevityLysosomesMammalian CellMitochondriaMitochondrial DiseasesMitochondrial ProteinsModelingMolecularMultienzyme ComplexesMultivesicular BodyMusMuscular AtrophyMutationNADH dehydrogenase (ubiquinone)NAT2 geneNamesNuclearOrganellesOxidative PhosphorylationParkinson DiseasePathogenicityPathway interactionsPhenotypePlayProcessProductionProtein ImportProteinsProton PumpRett SyndromeRoleSignal PathwaySignal TransductionSkeletal MuscleStressSystemTestingTissuesTransgenic MiceVacuoleYeastsbiochemical toolscell agedetection of nutrientexperimental studyfitnessfrontotemporal lobar dementia amyotrophic lateral sclerosisgene discoverygenomic toolsin vivolate endosomemouse modelnoveloverexpressionpostmitoticprotein degradationstressorsuccesssynergismtraffickingvacuolar H+-ATPaseyoung adult
项目摘要
This application synergizes expertise from two groups, with one specialized in mitochondrial biology and
proteostatic signaling and the other in V-ATPase biochemistry and vacuolar/lysosomal biology. Mitochondria
are multifunctional organelles. In addition to their major role in ATP production, mitochondria are also involved
in other cellular processes including stress signaling and cell death. However, under many pathophysiological
conditions and during aging, to what extent impairment to non-bioenergetic mitochondrial functions contributes
to the decline of cell fitness is poorly understood. We found that various mitochondrial stressors can directly
induce proteostatic stress in the cytosol independent of energy metabolism, by a mechanism named
mitochondrial Precursor Overaccumulation Stress (mPOS). The mechanisms by which mPOS affects cellular
function and viability remain unknown so far. The lysosome (or vacuole in yeast) also carries out many cellular
functions in the cell, including pH control, ion and amino acid homeostasis, protein degradation, autophagy and
vesicular trafficking. Interestingly, defects in mitochondrial and lysosomal functions can both contribute to cell
aging and aging-associated degenerative disorders, including Parkinson’s disease and amyotrophic lateral
sclerosis. This odd coincidence invites the question of whether damage to mitochondria and lysosomes can
synergize, either sequentially or additively, to affect a common cellular process critical for the fitness and
survival of aged cells. To address this question, it is important to comprehensively describe how mitochondria
and lysosomes interact at the molecular level to affect cellular functions. In this application, we focus on a
novel mitochondria-to-lysosome stress signaling pathway, in which mitochondrial defects cause proteostatic
stress to the vacuole/lysosome thereby affecting cell survival. The scientific premise of this application is based
on our strong preliminary data from studies in yeast, cultured human cells and transgenic mice. More
specifically, the Aim 1 of the proposal will test the hypothesis that specific mitochondrial stress can cause
severe proteostatic damage to the yeast vacuole. The genetic amenability of the yeast system will enable us to
discover genes that suppress the mitochondria-to-vacuole stress signaling and possibly, extend cell’s lifespan.
In Aim 2, we will validate this novel mitochondria-to-lysosome stress signaling pathway in cultured mammalian
cells. In Aim 3, we will test the hypothesis that mitochondrial stress causes lysosomal damage and affects
tissue homeostasis in vivo, using a unique mouse model that we recently developed. We will determine the
mechanism of the mitochondria-induced lysosomal damage in post-mitotic tissues. Success of our experiments
may unravel a novel mechanism of cell demise that involves mitochondria-to-lysosome stress signaling. The
results may ultimately help the better understanding of many aging-associated diseases that are co-manifested
by mitochondrial and lysosomal defects.
该应用程序协同两个小组的专业知识,一个专门从事线粒体生物学,
蛋白质抑制信号传导和其他在V-ATP酶生物化学和液泡/溶酶体生物学。线粒体
是多功能的细胞器。线粒体除了在ATP生成中起主要作用外,
在其他细胞过程中,包括应激信号和细胞死亡。然而,在许多病理生理学
条件和老化期间,在何种程度上损害非生物能线粒体功能的贡献
对细胞适应性下降的影响知之甚少。我们发现各种线粒体应激源可以直接
通过一种名为
线粒体前体过度积累应激(mPOS)。mPOS影响细胞的机制
功能和可行性至今仍不清楚。溶酶体(或酵母中的液泡)也进行许多细胞内的
在细胞中的功能,包括pH控制,离子和氨基酸稳态,蛋白质降解,自噬和
囊泡运输有趣的是,线粒体和溶酶体功能的缺陷都有助于细胞凋亡。
衰老和与衰老相关的退行性疾病,包括帕金森病和肌萎缩侧索硬化症,
硬化症这种奇怪的巧合引发了一个问题,即线粒体和溶酶体的损伤是否可以
协同作用,无论是顺序或相加,以影响一个共同的细胞过程的健身和关键
老化细胞的存活。为了解决这个问题,重要的是要全面描述线粒体如何
和溶酶体在分子水平上相互作用以影响细胞功能。在这个应用程序中,我们专注于
一种新的线粒体-溶酶体应激信号通路,其中线粒体缺陷引起蛋白质抑制
应激到液泡/溶酶体,从而影响细胞存活。这项申请的科学前提是基于
基于我们在酵母、培养的人类细胞和转基因小鼠研究中获得的有力的初步数据。更
具体而言,该提案的目标1将检验特定线粒体应激可导致
对酵母液泡的严重蛋白抑制损伤。酵母系统的遗传顺从性将使我们能够
发现抑制细胞到液泡压力信号的基因,并可能延长细胞的寿命。
在目标2中,我们将在培养的哺乳动物细胞中验证这种新的细胞-溶酶体应激信号通路,
细胞在目标3中,我们将检验线粒体应激引起溶酶体损伤并影响细胞凋亡的假设。
体内组织稳态,使用我们最近开发的独特小鼠模型。康贝特人将以
在有丝分裂后组织中,ESTA诱导的溶酶体损伤的机制。我们实验的成功
可能揭示了一种新的细胞死亡机制,涉及细胞对溶酶体的应激信号。的
这些结果最终可能有助于更好地理解许多与衰老相关的疾病,
线粒体和溶酶体缺陷。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xin Jie Chen其他文献
Xin Jie Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xin Jie Chen', 18)}}的其他基金
Novel mechanism of neural and muscular degeneration
神经和肌肉退化的新机制
- 批准号:
10247517 - 财政年份:2020
- 资助金额:
$ 40.75万 - 项目类别:
Novel mechanism of neural and muscular degeneration
神经和肌肉退化的新机制
- 批准号:
10414131 - 财政年份:2020
- 资助金额:
$ 40.75万 - 项目类别:
Novel mechanism of neural and muscular degeneration
神经和肌肉退化的新机制
- 批准号:
10624824 - 财政年份:2020
- 资助金额:
$ 40.75万 - 项目类别:
Mechanism of Mitochondria-induced Progressive Muscle Wasting
线粒体诱导进行性肌肉萎缩的机制
- 批准号:
10062793 - 财政年份:2019
- 资助金额:
$ 40.75万 - 项目类别:
Mechanism of Mitochondria-induced Progressive Muscle Wasting
线粒体诱导进行性肌肉萎缩的机制
- 批准号:
10539303 - 财政年份:2019
- 资助金额:
$ 40.75万 - 项目类别:
Mechanism of Mitochondria-induced Progressive Muscle Wasting
线粒体诱导进行性肌肉萎缩的机制
- 批准号:
10348145 - 财政年份:2019
- 资助金额:
$ 40.75万 - 项目类别:
Aging-related mitochondrial degeneration and degenerative diseases
与衰老相关的线粒体变性和退行性疾病
- 批准号:
8277247 - 财政年份:2005
- 资助金额:
$ 40.75万 - 项目类别:
Ant-induced cell death and human degenerative diseases
蚂蚁诱导的细胞死亡和人类退行性疾病
- 批准号:
7438806 - 财政年份:2005
- 资助金额:
$ 40.75万 - 项目类别:
Ant-induced cell death and human degenerative diseases
蚂蚁诱导的细胞死亡和人类退行性疾病
- 批准号:
7364643 - 财政年份:2005
- 资助金额:
$ 40.75万 - 项目类别:
Aging-related mitochondrial degeneration and degenerative diseases
与衰老相关的线粒体变性和退行性疾病
- 批准号:
8459464 - 财政年份:2005
- 资助金额:
$ 40.75万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 40.75万 - 项目类别:
Parkinson's disease and aging affect neural activation during continuous gait alterations to the split-belt treadmill: An [18F] FDG PET Study.
帕金森病和衰老会影响分体带跑步机连续步态改变期间的神经激活:[18F] FDG PET 研究。
- 批准号:
400097 - 财政年份:2019
- 资助金额:
$ 40.75万 - 项目类别:
The elucidation of the mechanism by which intestinal epithelial cells affect impaired glucose tolerance during aging
阐明衰老过程中肠上皮细胞影响糖耐量受损的机制
- 批准号:
19K09017 - 财政年份:2019
- 资助金额:
$ 40.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Does aging of osteocytes adversely affect bone metabolism?
骨细胞老化会对骨代谢产生不利影响吗?
- 批准号:
18K09531 - 财政年份:2018
- 资助金额:
$ 40.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Links between affect, executive function, and prefrontal structure in aging: A longitudinal analysis
衰老过程中情感、执行功能和前额叶结构之间的联系:纵向分析
- 批准号:
9766994 - 财政年份:2018
- 资助金额:
$ 40.75万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 40.75万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 40.75万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 40.75万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9925164 - 财政年份:2016
- 资助金额:
$ 40.75万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9345997 - 财政年份:2016
- 资助金额:
$ 40.75万 - 项目类别: