Deep Learning Based Natural Language Processing Markers of Anxiety and Depression
基于深度学习的自然语言处理的焦虑和抑郁标记
基本信息
- 批准号:10723819
- 负责人:
- 金额:$ 19.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-08 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAlgorithmsAnxietyArtificial IntelligenceAttentionAwardBehavior assessmentCaringClassificationClinicalCognitiveComputational LinguisticsDataDecision MakingDetectionDevelopmentDiagnosisDictionaryDigital biomarkerDimensionsEmotionalEngineeringEvaluationFutureGeneralized Anxiety DisorderGoalsHealthHeterogeneityHumanImpairmentIndividualInterventionInterviewK-Series Research Career ProgramsLanguageLearningLinguisticsMajor Depressive DisorderMeasurementMeasuresMental DepressionMentored Patient-Oriented Research Career Development AwardMentorshipMethodologyMethodsModelingMonitorMoralityNatural Language ProcessingNegative ValenceOutpatientsPatient Self-ReportPatientsPatternPerformancePopulationPositive ValenceProtocols documentationPsychiatryPsychotherapyPublic HealthQuality of lifeReactionResearchResearch Domain CriteriaRewardsRiskSamplingScientific Advances and AccomplishmentsSecuritySourceStandardizationSymptomsSystemTestingTrainingTranscriptValidationbasebehavioral healthbiomarker identificationcomorbiditydeep learningdeep learning modeldesigndiagnostic strategydigital healthdigital tooldisabilityeconomic costemotional stimulusexperienceimprovedlearning strategyloss of functionmultidisciplinaryneuroeconomicsnovelprogramsrecruitresponsescreeningsuicidal risktooltrait
项目摘要
PROJECT SUMMARY / ABSTRACT
Major Depressive Disorder (MDD) and Generalized Anxiety Disorder (GAD) are among the primary
causes of health burden worldwide. MDD is a leading cause of disability associated with increased morality
risk, and both MDD and GAD result in considerable economic costs, loss of functioning, and decreased quality
of life. One of the biggest challenges in responding to current calls for population-level screening is to monitor
MDD and GAD at a large scale while minimizing assessment burden. Existing assessment methods, however,
rely on subjective measures, are based on diagnostic approaches, and are burdensome in the extent needed
to characterize MDD and GAD in their heterogeneity, which would require combined evaluation of all
symptoms. New methods are needed to accurately assess behavioral health, overcome barriers to monitoring
and care, and advance the scientific understanding of depression and anxiety.
The proposed study aims to address these gaps by deconstructing MDD and GAD into Digital
Biomarkers (DB) based on linguistic features identified by large language models. State of the art artificial
intelligence and Natural Language Processing methods allow representation learning of DB from cognitive and
emotional domains captured from linguistic information. While effective, passive, and at-scale monitoring are
the primary benefits of DB, we will also use them to study relevant Research Domain Criteria (RDoC),
including negative valence system reactions and positive valence traits. The study goals are to: 1) Design DB
of MDD and GAD symptoms using deep learning methods, by training an attention-based language model on a
very large corpus of de-identified psychotherapy treatment transcripts; 2) Examine preliminary performance
and feasibility of the DB model in a highly characterized sample of MDD and GAD patients, and compare
results with clinician ratings; 3) Explore improvements to the DB model based on research paradigms
consistent with RDoC constructs, to further refine DB model pipeline and future deployment in clinical settings.
The program of research and training described in this mentored patient-oriented research career
development award is aimed at developing systematic digital health approaches to allow dimensional
conceptualization of MDD and GAD consistent with RDoC, enhancing the ease and consistency of detection to
ultimately support targeted interventions. The proposed project is strongly supported by a multidisciplinary
team including the mentorship of Drs. Naomi Simon and Kyunghyun Cho, and the domain expertise of Drs.
Paul Glimcher, Tim Althoff, Zhe Chen, and Tanzeem Choudhury. The experience gained from the award will
enable the pursuit of future R-level studies focusing on advanced computational psychiatry approaches to
further refine DB models to improve passive and objective assessment of behavioral health, and ultimately
improve our empirical understanding of depression and anxiety.
项目总结/摘要
主要的抑郁症(MDD)和广泛性焦虑症(GAD)是
全世界的健康负担。MDD是与道德增加相关的残疾的主要原因
风险,MDD和GAD都会导致相当大的经济成本、功能丧失和质量下降
生命在回应目前对人群水平筛查的呼吁方面,最大的挑战之一是监测
大规模MDD和GAD,同时尽量减少评估负担。然而,现有的评估方法,
依赖于主观测量,基于诊断方法,并且在所需的程度上是繁重的
描述MDD和GAD的异质性,这需要对所有
症状需要新的方法来准确评估行为健康,克服监测障碍,
和关怀,推进对抑郁症和焦虑症的科学认识。
拟议的研究旨在通过将MDD和GAD解构为数字化来解决这些差距
生物标记(DB)基于大型语言模型识别的语言特征。最先进的人工
智能和自然语言处理方法允许从认知和
从语言信息中获取的情感域。虽然有效的、被动的和大规模的监测是可行的,
数据库的主要好处,我们还将使用它们来研究相关的研究领域标准(RDoC),
包括负价系统反应和正价特质。本研究的目的是:1)设计数据库
使用深度学习方法对MDD和GAD症状进行分析,通过在
非常大的去识别的心理治疗治疗成绩单语料库; 2)检查初步表现
DB模型在MDD和GAD患者的高度特征化样本中的可行性,并比较
结果与临床医生评级; 3)探索基于研究范式的DB模型的改进
与RDoC结构一致,以进一步完善DB模型管道和临床环境中的未来部署。
研究和培训计划中所述的指导病人为导向的研究生涯
发展奖旨在开发系统的数字健康方法,
MDD和GAD的概念化与RDoC一致,提高了检测的容易性和一致性,
最后是有针对性的干预措施。该项目得到了多学科专家的大力支持。
团队,包括Naomi Simon博士和Kyunghyun Cho博士的指导,以及Dr.
Paul Glimcher,Tim Althoff,Zhe Chen,and Tanzeem Choudhury.从获奖中获得的经验将
能够追求未来的R级研究,重点是先进的计算精神病学方法,
进一步完善DB模型,以改善对行为健康的被动和客观评估,并最终
改善我们对抑郁和焦虑的实证理解。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matteo Malgaroli其他文献
Matteo Malgaroli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
Research Grant