Identifying Placebo Responders in Drug Treated Subjects

确定药物治疗受试者中的安慰剂反应者

基本信息

  • 批准号:
    7154750
  • 负责人:
  • 金额:
    $ 17.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-03-05 至 2008-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): In order to determine the efficacy of pharmacological interventions in clinical trials, the placebo effect must be taken into consideration. It is important to distinguish placebo effects from the effects of the actual treatment being tested. Most studies of the placebo effect have looked at responders who have been treated with a placebo and have tried to identify factors that can predict such response. This is obviously a very limited approach because data from subjects treated with the active drug is ignored. The research proposed here is to develop statistical methodology for identifying and differentiating placebo responses from true drug responses in the treatment of mental illnesses such as depression where placebo response rates tend to be high. The initial research will focus on clinical trial data studying treatments for depression. The proposed statistical methodology will combine functional data analysis with cluster analysis and mixture models. Outcome profiles for individual subjects will be estimated using longitudinal data from clinical trials. Appropriate basis functions will be determined to estimate the profile trajectories. The profiles will then be described by a small number of estimated basis function coefficients. Depending on the distribution of estimated coefficients, representative profiles will be estimated using principal point/cluster analysis or a finite mixture analysis. Data from the placebo arm of the studies will also be used to estimate and validate the representative profiles. The representative profiles will then be used to classify future subjects as placebo responders, true drug responders or a combination of a drug-placebo responder. Further work will refine the methodology by incorporating random effects models and addressing problems such as missing data. The derived models will be cross-classified with clinician determined responder/non-responder status for validation. In addition, data from discontinuation studies are available and will be used to further validate the models for placebo response. The second phase of the study will apply the methodology to characterize classes of drugs (ssri, tricyclics and maoi) with respect to their placebo response profiles. The final phase of the research will apply the methodology of determining the placebo effect from the true drug effect in other mental illnesses such as anxiety, obsessive compulsive disorders, panic and post traumatic stress syndrome.
描述(由申请人提供):为了确定临床试验中药物干预的有效性,必须考虑安慰剂效应。重要的是要区分安慰剂效应和实际治疗的效应。大多数关于安慰剂效应的研究都着眼于接受安慰剂治疗的反应者,并试图确定可以预测这种反应的因素。这显然是一种非常有限的方法,因为忽略了接受活性药物治疗的受试者的数据。本文提出的研究旨在开发统计方法,用于识别和区分安慰剂反应与治疗抑郁症等精神疾病的真实药物反应,其中安慰剂反应率往往很高。最初的研究将集中在研究抑郁症治疗的临床试验数据上。拟议的统计方法将联合收割机功能数据分析与聚类分析和混合模型相结合。将使用临床试验的纵向数据估计个体受试者的结局特征。将确定适当的基函数来估计轮廓轨迹。然后将通过少量估计的基函数系数来描述轮廓。根据估计系数的分布,将使用主点/聚类分析或有限混合分析来估计代表性曲线。研究安慰剂组的数据也将用于估计和验证代表性特征。然后将使用代表性特征将未来受试者分类为安慰剂应答者、真正药物应答者或药物-安慰剂应答者的组合。进一步的工作将通过纳入随机效应模型和解决数据缺失等问题来完善方法。将推导出的模型与临床医生确定的应答者/非应答者状态交叉分类,以进行验证。此外,中止研究的数据可用,并将用于进一步验证安慰剂应答模型。研究的第二阶段将应用该方法来描述药物类别(ssri,三环类药物和maoi)的安慰剂反应特征。研究的最后阶段将采用从其他精神疾病(如焦虑、强迫症、恐慌和创伤后应激综合征)的真实药物效应中确定安慰剂效应的方法。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Latent Regression Analysis.
潜在回归分析。
  • DOI:
    10.1177/1471082x0801000202
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Tarpey,Thaddeus;Petkova,Eva
  • 通讯作者:
    Petkova,Eva
Extracting scalar measures from functional data with applications to placebo response.
  • DOI:
    10.4310/20-sii633
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Tarpey T;Petkova E;Ciarleglio A;Ogden RT
  • 通讯作者:
    Ogden RT
Optimal Partitioning for Linear Mixed Effects Models: Applications to Identifying Placebo Responders.
Modelling Placebo Response via Infinite Mixtures.
通过无限混合物模拟安慰剂反应。
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0.1
  • 作者:
    Tarpey,Thaddeus;Petkova,Eva
  • 通讯作者:
    Petkova,Eva
Partitioning of Functional Data for Understanding Heterogeneity in Psychiatric Conditions.
功能数据分区以了解精神疾病的异质性。
  • DOI:
    10.4310/sii.2009.v2.n4.a3
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Petkova,Eva;Tarpey,Thaddeus
  • 通讯作者:
    Tarpey,Thaddeus
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

THADDEUS TARPEY其他文献

THADDEUS TARPEY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('THADDEUS TARPEY', 18)}}的其他基金

2/2 Pulmonary Embolism: Thrombus Removal with Catheter-Directed Therapy (PE-TRACT Trial) –DCC
2/2 肺栓塞:导管定向治疗血栓清除(PE-TRACT 试验)—DCC
  • 批准号:
    10448731
  • 财政年份:
    2022
  • 资助金额:
    $ 17.9万
  • 项目类别:
Identifying Placebo Responders in Drug Treated Subjects
确定药物治疗受试者中的安慰剂反应者
  • 批准号:
    7027013
  • 财政年份:
    2005
  • 资助金额:
    $ 17.9万
  • 项目类别:
Identifying Placebo Responders in Drug Treated Subjects
确定药物治疗受试者中的安慰剂反应者
  • 批准号:
    6920273
  • 财政年份:
    2005
  • 资助金额:
    $ 17.9万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 17.9万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 17.9万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了