Multimodality CAD system with image references for breast mass characterization
多模态 CAD 系统,具有用于乳腺质量表征的图像参考
基本信息
- 批准号:7295701
- 负责人:
- 金额:$ 15.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-25 至 2008-08-18
- 项目状态:已结题
- 来源:
- 关键词:AddressAnxietyBenignBiopsyBreastBreast Cancer DetectionClassificationClinicalComputer-Assisted DiagnosisComputersData SetDatabasesDecision MakingDecision TreesDiagnosisDiagnosticFeedbackGoalsHealth Care CostsImageImage retrieval systemLabelLesionLibrariesMalignant - descriptorMalignant NeoplasmsMammographyMethodsMorbidity - disease rateMultimodal ImagingNumbersPatientsPerformancePersonal SatisfactionPhaseProcessPublic HealthRateReaderReceiver Operating CharacteristicsResearchRetrievalScoreSystemTestingTimeLineTrainingUltrasonographyVariantbasecase-basedcomputerizeddesigndigital imagingexperienceimprovedinnovationnovel strategiesradiologisttool
项目摘要
DESCRIPTION (provided by applicant): The long term goal of the project is to develop an effective computer-aided diagnosis (CAD) system to assist radiologists in making diagnostic decisions in breast imaging. In this proposed project, we will concentrate on the characterization of masses using mammograms and ultrasound images. We propose a new approach to CAD based on a classifier that can simultaneously estimate the likelihood of malignancy for the mass and retrieve similar cases from a large library of cases with known diagnosis for the radiologist's references. The new CAD system thus combines the advantages of a rating-based and an image-retrieval- based CAD system. It will aid radiologists not only by the malignancy estimate but also by enhancing their similarity-based decision making process. We will also design a relevance feedback image retrieval system that allows the radiologist to interactively and efficiently retrieve similar cases from a large data set as a tool to help develop the automated CAD system. We hypothesize that the reference images will increase the characterization accuracy of less experienced readers for masses, and that the computerized classification and image retrieval system to be developed in this study will significantly improve radiologists' accuracy. To test these hypotheses, we will perform the following specific tasks: (1) collect a database of sonograms and mammograms containing masses; (2) extract features for mass characterization; (3) develop decision tree and k-nearest neighbor classifiers, compare decision tree training with and without boosting, and investigate methods for the retrieval of similar cases based on the developed classifiers; (4) develop a relevance feedback image retrieval method; (5) compare the performances of less experienced radiologists without and with aid by reference images retrieved by experienced radiologists; and (6) compare radiologists' performances without and with the fully-automated classification and image-retrieval CAD system by a receiver operating characteristic (ROC) study. If successfully developed, the CAD system may not only reduce benign biopsies, but also reduce the variation in interpretation between experienced and less experienced radiologists. The relevance of this project to public health is that 70-85% of breast biopsies are performed for benign lesions. Any reduction in this number without a decrease in breast cancer detection sensitivity will decrease health care costs, as well as contribute to the well-being of the patient by reducing anxiety and morbidity.
描述(由申请人提供):该项目的长期目标是开发一种有效的计算机辅助诊断(CAD)系统,以协助放射科医生做出乳腺成像的诊断决策。在这个拟议的项目中,我们将专注于使用乳房X光照片和超声图像来表征肿块。我们提出了一种基于分类器的 CAD 新方法,该分类器可以同时估计肿块恶性肿瘤的可能性,并从已知诊断的大型病例库中检索类似病例,以供放射科医生参考。因此,新的 CAD 系统结合了基于评级的 CAD 系统和基于图像检索的 CAD 系统的优点。它不仅可以帮助放射科医生进行恶性肿瘤估计,还可以增强他们基于相似性的决策过程。我们还将设计一个相关性反馈图像检索系统,使放射科医师能够以交互方式、高效地从大数据集中检索类似病例,作为帮助开发自动化 CAD 系统的工具。我们假设参考图像将提高经验不足的读者的表征准确性,并且本研究中开发的计算机分类和图像检索系统将显着提高放射科医生的准确性。为了检验这些假设,我们将执行以下具体任务:(1)收集包含肿块的超声检查和乳房X光检查数据库; (2)提取特征进行质量表征; (3) 开发决策树和k近邻分类器,比较有和没有boosting的决策树训练,并研究基于开发的分类器检索相似案例的方法; (4)开发相关性反馈图像检索方法; (5) 通过经验丰富的放射科医生检索的参考图像来比较经验不足的放射科医生在没有和有帮助的情况下的表现; (6) 通过接受者操作特性 (ROC) 研究来比较放射科医生在没有和有全自动分类和图像检索 CAD 系统的情况下的表现。如果成功开发,CAD 系统不仅可以减少良性活检,还可以减少经验丰富和经验不足的放射科医生之间解释的差异。该项目与公共卫生的相关性在于,70-85% 的乳腺活检是针对良性病变进行的。在不降低乳腺癌检测灵敏度的情况下减少这一数字将降低医疗保健成本,并通过减少焦虑和发病率来促进患者的福祉。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BERKMAN SAHINER其他文献
BERKMAN SAHINER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BERKMAN SAHINER', 18)}}的其他基金
Multimodality CAD system with image references for breast mass characterization
多模态 CAD 系统,具有用于乳腺质量表征的图像参考
- 批准号:
7147093 - 财政年份:2006
- 资助金额:
$ 15.15万 - 项目类别:
Multimodality CAD system with image references for breast mass characterization
多模态 CAD 系统,具有用于乳腺质量表征的图像参考
- 批准号:
7665198 - 财政年份:2006
- 资助金额:
$ 15.15万 - 项目类别:
相似海外基金
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 15.15万 - 项目类别:
Fellowship
Clinitouch-360: A digital health platform enabling robust end-to-end care of patients in Primary Care with depression and anxiety
Clinitouch-360:数字健康平台,可为初级保健中的抑郁和焦虑患者提供强大的端到端护理
- 批准号:
10098274 - 财政年份:2024
- 资助金额:
$ 15.15万 - 项目类别:
Collaborative R&D
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 15.15万 - 项目类别:
Visual analysis system to detect and predict the signs of anxiety in healthcare
用于检测和预测医疗保健中焦虑迹象的视觉分析系统
- 批准号:
2902083 - 财政年份:2024
- 资助金额:
$ 15.15万 - 项目类别:
Studentship
Using generative AI combined with immersive technology to treat anxiety disorders
利用生成式人工智能结合沉浸式技术治疗焦虑症
- 批准号:
10109165 - 财政年份:2024
- 资助金额:
$ 15.15万 - 项目类别:
Launchpad
Healthy Young Minds: co-producing a nature-based intervention with rural High School students to promote mental well-being and reduce anxiety
健康的年轻心灵:与农村高中生共同开展基于自然的干预措施,以促进心理健康并减少焦虑
- 批准号:
MR/Z503599/1 - 财政年份:2024
- 资助金额:
$ 15.15万 - 项目类别:
Research Grant
"Flashforward" imagery and anxiety in young adults: Risk mechanisms and intervention development
年轻人的“闪现”意象和焦虑:风险机制和干预措施的发展
- 批准号:
MR/Y009460/1 - 财政年份:2024
- 资助金额:
$ 15.15万 - 项目类别:
Fellowship
How parents manage climate anxiety: coping and hoping for the whole family
父母如何应对气候焦虑:全家人的应对和希望
- 批准号:
DP230101928 - 财政年份:2024
- 资助金额:
$ 15.15万 - 项目类别:
Discovery Projects
An innovative biofeedback enhanced adaptive extended reality (XR) device to reduce perinatal pain and anxiety during and after childbirth
一种创新的生物反馈增强型自适应扩展现实 (XR) 设备,可减少分娩期间和分娩后的围产期疼痛和焦虑
- 批准号:
10097862 - 财政年份:2024
- 资助金额:
$ 15.15万 - 项目类别:
Collaborative R&D
Digital cognitive-behavior therapy for anxiety and depressive disorders: Building an impactful research project from international partnerships and knowledge exchange in primary care
针对焦虑和抑郁症的数字认知行为疗法:通过初级保健领域的国际合作和知识交流建立一个有影响力的研究项目
- 批准号:
480808 - 财政年份:2023
- 资助金额:
$ 15.15万 - 项目类别:
Miscellaneous Programs














{{item.name}}会员




