A scalable cloud-based framework for multi-modal mapping across single neuron omics, morphology and electrophysiology
一个可扩展的基于云的框架,用于跨单个神经元组学、形态学和电生理学的多模式映射
基本信息
- 批准号:10725550
- 负责人:
- 金额:$ 241.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-21 至 2026-08-20
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAdoptionAgreementAlgorithmsAtlasesAwarenessBRAIN initiativeBrainCategoriesCellsClassificationCloud ComputingCollaborationsCommunitiesDataData AnalysesData SetDisciplineDocumentationEcosystemElectrophysiology (science)FAIR principlesGroupingIndividualKnowledgeLearningMapsMeasurementMetadataMethodologyMethodsMicroscopyModalityModelingMolecularMolecular BiologyMorphologyNervous SystemNeuronsNeurosciencesPeer ReviewPhenotypeProtocols documentationPublishingResearchResourcesScientistSourceSubgroupTrainingVisualizationVisualization softwareWorkanalytical toolbrain cellcell typecloud basedcommunity engagementcomputational platformdata integrationdata portaldata repositorydata standardshackathonimprovedindexinginsightinteractive toolinventionknowledge integrationmachine learning methodmultimodal datamultimodalityneurophysiologynovelopen dataopen sourceoutreachquery toolsrepositoryscale upsupervised learningtooltranscriptomicsuser-friendlyvector
项目摘要
Project Summary
Categorizing individual neurons into different groups, or cell types, is a classical approach to studying the nervous
system. With increasingly more tools being invented to observe the neurons, new criteria were created to
characterize different aspects, or modalities, of the cells. While these modality-specific categorizations have
enabled in-depth knowledge in neuroscience, the inconsistencies across different criteria leave data integration
across modalities technically difficult. In addition, disagreements of “similar cells” using different categorization
criteria have resulted in division of the neuroscience community into modality-centric subgroups. To solve this
problem, objective approaches to define cell similarities incorporating multiple modalities must be established
and developed in a way that is open, accessible, and engaging to the neuroscience community at large. We
propose to develop a broadly accessible cloud-based framework toward an integrative, multi-modal brain cell
atlas using novel, scalable analytics tools, leveraging federated BRAIN Initiative resources and community
engagement. The self-supervised learning methodology is purely data-driven, and allows highly accurate
identification of similar cells based on single or multiple modalities of measurements, without presumption about
modality-specific classes. It also enables cross-modality mapping, where unobserved measurements can be
inferred from single-modal data, achieving computational “scale-up” of the brain cell mapping efforts in low-
throughput modalities such as electrophysiology or morphology. With more multimodal data being collected and
added to the study, the algorithm accuracy of this inference will continue to grow in an automated way. The
open-source methodology will be productionized into cloud-native pipelines for individual modalities and for
cross-modality mapping, and installed in a cloud computing workbench as a part of the ecosystem, for scalable,
open data analyses. This cloud ecosystem will demonstrate access to BRAIN Initiative data repositories hosting
molecular (NeMO), neurophysiology (DANDI), and microscopy (BIL) data, such that datasets from different
sources can be brought into a common workspace for integrative analyses. Furthermore, the cloud ecosystem
will provide a user-friendly data portal for visualization and navigation of the multi-modal single cell data from the
repositories, as well as exploring the cell similarity query results. This ecosystem will support FAIR principles
and promote collaborative research and seek for extended integrations with data repositories. Through broad
engagement and outreach to neuroscience communities, this project will provide resources for building an
integrated brain cell atlas and facilitate the multimodal characterization of the brain.
项目摘要
将单个神经元分类为不同的组或细胞类型,是研究神经系统的经典方法。
系统随着越来越多的工具被发明来观察神经元,新的标准被创造出来,
表征细胞的不同方面或形态。虽然这些特定模式的分类
在神经科学方面的深入知识,不同标准之间的不一致性使数据集成
在技术上很困难。此外,使用不同分类的“相似细胞”的分歧
标准导致神经科学界分为以模态为中心的亚组。解决这个
问题,必须建立客观的方法来定义包含多种模态的细胞相似性
并以一种开放的、可访问的、吸引神经科学界的方式发展。我们
我建议开发一个广泛访问的基于云的框架,以实现一个综合的、多模式的脑细胞。
使用新颖、可扩展的分析工具,利用联合BRAIN Initiative资源和社区,
订婚自我监督学习方法纯粹是数据驱动的,并且允许高度准确的
基于单个或多个测量模态识别相似细胞,而不假设
特定于模态的类。它还支持跨模态映射,其中可以使用未观察到的测量结果。
从单模态数据推断,在低-
例如电生理学或形态学的通量模态。随着更多的多模态数据被收集,
在这项研究中,这种推理的算法准确性将以自动化的方式继续增长。的
开源方法将被生产化到云原生管道中,用于单个模式和
跨模态映射,并作为生态系统的一部分安装在云计算工作台中,用于可扩展,
开放数据分析。这个云生态系统将展示对BRAIN Initiative数据存储库的访问,
分子(NeMO),神经生理学(DANDI)和显微镜(BIL)数据,使得来自不同的数据集
可以将各种来源纳入一个共同的工作空间,以便进行综合分析。此外,云生态系统
将提供一个用户友好的数据门户,用于可视化和导航来自
存储库,以及探索细胞相似性查询结果。这个生态系统将支持公平原则
促进合作研究,并寻求与数据库的扩展集成。通过广泛
参与和推广神经科学社区,该项目将提供资源,建立一个
整合的脑细胞图谱,并促进大脑的多模态表征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bing-Xing Huo其他文献
Bing-Xing Huo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 241.52万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 241.52万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 241.52万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 241.52万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 241.52万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 241.52万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 241.52万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 241.52万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 241.52万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 241.52万 - 项目类别:
Standard Grant