Developing Machine Learning Models for Decision Support and Allocation Optimization in Heart Transplantation
开发用于心脏移植决策支持和分配优化的机器学习模型
基本信息
- 批准号:10735348
- 负责人:
- 金额:$ 56.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-04 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdoptionAdultArtificial IntelligenceClinicalComplexComputer AnalysisComputer SimulationDataData SetDecision MakingDecision Support ModelDecision Support SystemsDevelopmentEvaluationFAIR principlesFaceFailureFutureGoalsHeartHeart TransplantationHeart failureHumanIndividualJudgmentMachine LearningModelingMulticenter TrialsOrganOutcomeOutputPatientsPerformancePoliciesPolicy MakerPolicy MakingPredictive AnalyticsPreparationProcessProviderReportingResearchResourcesRiskSpecific qualifier valueSurvival RateTechnology AssessmentTimeTransplant RecipientsTransplantationVisualWaiting ListsWorkclinical candidateclinical decision-makingclinically relevantdata registryexperiencehigh riskimplementation scienceimplementation strategyimprovedimproved outcomeinnovationmachine learning methodmachine learning modelmortality risknovelopen datapersonalized decisionpost-transplantpredictive modelingprogramsprototyperisk predictionstatisticsstemsuccesssupport toolstooltransplant centerstransplant databasetrendusabilityweb-based tool
项目摘要
PROJECT SUMMARY/ABSTRACT
The impact of heart transplantation (HTx) remains limited by donor shortages, with an estimated 250,000 adults
who may benefit from transplant despite only 3,500 being performed each year in the US. Unfortunately, donor
discard rates remain high at 70-80%, with substantial unexplained variability in donor evaluation and acceptance
practices between centers. Recent data also demonstrate that higher risk recipients are being transplanted
under the new 2018 allocation policy with worse post-transplant survival rates nationally. These trends
collectively underscore current limitations in allocation policy and the ability for individual programs to assess
donor quality and to pair suitable donors with appropriately selected recipients. The latter stems from a
suboptimal process whereby clinicians have to make time-sensitive decisions relying solely upon experience
and judgement without data-driven tools that can analyze numerous donor and recipient data and their complex
interactions to provide rapid and accurate outcome projections. Existing risk models have failed to garner
widespread utilization due to major limitations, including 1) narrow focus on only one of a set of relevant
outcomes, 2) simplistic approach with only modest discriminatory capability (c-statistics <0.70), 3) failure to
account for complex interactions between donor and recipient variables, and 4) use of only static, cross-sectional
data. Our proposal seeks to advance the field by leveraging a novel, comprehensive dataset and machine
learning (ML) to develop robust models that can maximize predictive performance for relevant outcomes and to
better align a candidate's clinical trajectory and anticipated transplant outcome. These models will better account
for complex interrelationships between donor and recipient variables, and will also account for dynamic changes
in candidate and donor parameters. Optimized models will then be incorporated into a decision support system
guided by key stakeholders. In addition, a previously developed artificial intelligence (AI) framework will be used
to optimize heart allocation policy. We have these specific aims: 1) Establish the feasibility and usability of a
stakeholder-guided, ML-derived decision support system for adult HTx; 2) Demonstrate the adaptability of a
previously developed AI-based policy-optimization framework to heart allocation; and 3) Inform and evaluate the
processes and outputs of Specific Aims 1 and 2 using stakeholder engagement and implementation science to
refine and optimize working prototypes and promote the understanding, adoption, and use of data-driven
decision support tools created for HTx. This work will optimize the allocation of scarce resources and ultimately
improve outcomes of HTx.
项目摘要/摘要
心脏移植(HTx)的影响仍然受到供体短缺的限制,估计有25万成年人
尽管在美国每年只有3,500例移植手术,不幸的是,捐赠者
丢弃率仍然高达70- 80%,在供体评估和接受方面存在大量无法解释的变化
中心之间的实践。最近的数据也表明,高风险的受体正在被移植,
根据新的2018年分配政策,全国移植后存活率更差。这些趋势
共同强调了当前分配政策的局限性和个别项目评估的能力,
捐助者质量和配对合适的捐助者与适当选择的受体。后者源于A
次优过程,临床医生必须仅依靠经验做出时间敏感的决策
没有数据驱动的工具,可以分析大量的捐助者和受援者的数据,
互动,以提供快速和准确的结果预测。现有的风险模型未能获得
广泛使用由于主要的局限性,包括1)狭隘的重点,只有一套相关的
结果,2)简单的方法,只有适度的区分能力(c-统计<0.70),3)未能
考虑到捐赠者和接受者变量之间的复杂相互作用,以及4)仅使用静态,横截面
数据我们的提案旨在通过利用一个新颖的,全面的数据集和机器来推进该领域
学习(ML)开发强大的模型,可以最大限度地提高相关结果的预测性能,
更好地调整候选人的临床轨迹和预期的移植结果。这些模型将更好地说明
捐助方和受援方变量之间复杂的相互关系,并将考虑到动态变化
候选人和捐赠者参数。优化的模型将被纳入决策支持系统
由关键利益攸关方指导。此外,还将使用此前开发的人工智能(AI)框架
优化心脏配置政策。我们有这些具体的目标:1)建立一个可行性和可用性,
成人HTx的决策支持系统; 2)证明一个
先前开发的基于人工智能的心脏分配策略优化框架;以及3)告知和评估
利用利益攸关方参与和实施科学,
完善和优化工作原型,促进对数据驱动的理解、采用和使用
为HTx创建的决策支持工具。这项工作将优化稀缺资源的配置,
改善HTx的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arman Kilic其他文献
Arman Kilic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 56.6万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 56.6万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 56.6万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 56.6万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 56.6万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 56.6万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 56.6万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 56.6万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 56.6万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 56.6万 - 项目类别:
Research Grant