Deep learning on ECGs to improve outcomes in patients on dialysis
心电图深度学习可改善透析患者的预后
基本信息
- 批准号:10734856
- 负责人:
- 金额:$ 73.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:Adrenergic beta-AntagonistsAffectBlood PressureCardiacCardiac OutputCardiologyCardiovascular systemCause of DeathClinicalClinical DataClinical ManagementDataDatabasesDerivation procedureDetectionDevelopmentDiagnosisDialysis procedureEarly DiagnosisEarly identificationElectrocardiogramEnd stage renal failureEventFunctional disorderGoalsHealthHeart DiseasesHeart RateHeart failureHemodialysisHospitalizationHospitalsHuman ResourcesHypotensionImpairmentIncidenceInstitutionInterventionLeadLeftLeft Ventricular Ejection FractionLinkMaintenanceMidodrineModelingMonitorMorbidity - disease rateMyocardialMyocardial InfarctionMyocardial StunningMyocardial dysfunctionNew York CityNorth CarolinaOutcomeParticipantPatientsPerformancePharmaceutical PreparationsPhysiciansPopulationPreventionProspective StudiesPublishingReflex actionRiskSample SizeTechniquesTestingTherapeuticTrainingUltrafiltrationValidationVisitVulnerable PopulationsWorkadvanced analyticsadverse outcomeclinically actionableconvolutional neural networkdeep learningfollow-upheart functionhigh riskimprovedimproved outcomeinhibitorinsightlearning strategymortalitynoveloutcome predictionpatient populationpredictive modelingprognosticationprophylacticprospectiverecruitrecurrent neural networkrisk predictionrisk prediction modelsecondary outcomeside effectstructured datatransfer learningwearable device
项目摘要
ABSTRACT.
Intradialytic hypotension (IDH) and major adverse cardiovascular events (MACE) are common in patients on
maintenance hemodialysis (HD) and contribute significantly to morbidity and mortality in this vulnerable patient
population. Although strategies to decrease these adverse outcomes exist, the lack of accurate and actionable
predictive risk models has led to overall low and non-targeted utilization of these strategies.
Electrocardiography (ECG) is ubiquitous, cheap, simple to perform, and it provides an immediately accessible,
non-invasive insight into cardiovascular reflexes and health. The raw waveform data can be leveraged by
advanced deep learning for accurate determination of various cardiac features as well as prognostication of
key outcomes. In our prior published work, we demonstrated the utility of deep learning to determine both right
and left heart function and the utility of transfer learning to improve outcome prediction in patients on HD. In
recent preliminary analysis, we also show utility of waveform data to predict in hospital IDH and association
with 30-day mortality using retrospective data. However, prospective development and validation on IDH and
MACE are critical to clinical deployment. Thus, extending our prior work, we propose the largest prospective
study on utilizing ECGs for prediction of key outcomes in patients on HD. We will recruit 1000 diverse patients
on HD from dialysis units in New York City (derivation) and 150 patients from North Carolina (validation) and
obtain standard duration, 12-lead ECGs at baseline and 4 weeks after baseline. In addition, a subset of
participants will undergo continuous waveform monitoring during 3 consecutive HD sessions in an exploratory
sub-study. We will then use deep learning and transfer learning (using pre-trained models from our
approximately 11 million archival ECG database) and use this to predict IDH at the same session and within 30
days (Aim 1) and a composite outcome of MACE at 1 year of follow up (Aim 2). The results of this proposal
are of high clinical importance for the prediction of both short- and long-term cardiac outcomes. Positive results
will prompt studies testing deployment of our predictive models into HD units for detection and prevention of
IDH and MACE as well use of novel wearables for IDH and cardiac risk prediction.
摘要。
透析中低血压(IDH)和主要不良心血管事件(MACE)在接受
维持性血液透析(HD),并显著增加这一脆弱患者的发病率和死亡率
人口虽然存在减少这些不良后果的策略,但缺乏准确和可操作的方法,
预测性风险模型导致这些战略的总体利用率较低且无针对性。
心电图(ECG)无处不在、廉价、易于执行,并且它提供了一种立即可用的,
非侵入性地洞察心血管反射和健康。原始波形数据可以通过以下方式利用:
先进的深度学习,用于准确确定各种心脏特征,
关键成果。在我们之前发表的工作中,我们展示了深度学习的实用性,以确定两者的正确性。
和左心功能以及迁移学习在改善HD患者预后预测中的作用。在
最近的初步分析,我们还显示了实用的波形数据,以预测在医院IDH和协会
30天死亡率。然而,IDH的未来发展和验证,
MACE对于临床部署至关重要。因此,扩展我们以前的工作,我们提出了最大的前景
利用ECG预测HD患者关键结局的研究。我们将招募1000名不同的患者
来自纽约市透析单位的HD患者(推导)和来自北卡罗来纳州的150例患者(验证),
在基线和基线后4周获得标准持续时间、12导联ECG。此外,
参与者将在3个连续HD疗程期间接受连续波形监测,
子研究。然后,我们将使用深度学习和迁移学习(使用我们的预训练模型)
大约1100万个档案ECG数据库),并使用该数据预测同一会话中的IDH,并在30
天(目标1)和1年随访时MACE的复合结局(目标2)。这一提议的结果
对于短期和长期心脏结局的预测具有很高的临床重要性。积极成果
将推动研究测试部署我们的预测模型到HD单位,以检测和预防
IDH和MACE以及使用新型可穿戴设备进行IDH和心脏风险预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David M Charytan其他文献
David M Charytan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David M Charytan', 18)}}的其他基金
Safety and Efficacy of Empagliflozin Main intenance HD (SEED)
Empagliflozin Main Intenance HD (SEED) 的安全性和功效
- 批准号:
10660436 - 财政年份:2023
- 资助金额:
$ 73.54万 - 项目类别:
Intradialytic Myocardial Stunning in Hemodialysis Patients - a Novel Cardiovascular Risk Factor
血液透析患者透析中心肌顿抑——一种新的心血管危险因素
- 批准号:
10367558 - 财政年份:2021
- 资助金额:
$ 73.54万 - 项目类别:
Intradialytic Myocardial Stunning in Hemodialysis Patients - a Novel Cardiovascular Risk Factor
血液透析患者透析中心肌顿抑——一种新的心血管危险因素
- 批准号:
10544017 - 财政年份:2021
- 资助金额:
$ 73.54万 - 项目类别:
Pain, Opioids, and ESRD risk reduction with Mindfulness and Buprenorphine (POEM-B): A 3-arm multi-site randomized trial in hemodialysis patients
正念和丁丙诺啡可降低疼痛、阿片类药物和 ESRD 风险 (POEM-B):针对血液透析患者的 3 组多中心随机试验
- 批准号:
9901871 - 财政年份:2019
- 资助金额:
$ 73.54万 - 项目类别:
Randomized trials using point of care-guided manipulation of dialysate potassium, dialysate bicarbonate, and ultrafiltration rate to prevent hemodilaysis-associated arrythmia
使用护理点指导控制透析液钾、透析液碳酸氢盐和超滤率来预防血液透析相关心律失常的随机试验
- 批准号:
9815883 - 财政年份:2018
- 资助金额:
$ 73.54万 - 项目类别:
NO, myocardial fibrosis, and microvascular rarefaction in ESRD: Pilot Studies
ESRD 中的 NO、心肌纤维化和微血管稀疏:试点研究
- 批准号:
8623052 - 财政年份:2014
- 资助金额:
$ 73.54万 - 项目类别:
Optimizing Revascularization of Coronary Artery Disease in Chronic Kidney Disease
优化慢性肾脏病冠状动脉疾病的血运重建
- 批准号:
8631538 - 财政年份:2014
- 资助金额:
$ 73.54万 - 项目类别:
Optimizing Revascularization of Coronary Artery Disease in Chronic Kidney Disease
优化慢性肾脏病冠状动脉疾病的血运重建
- 批准号:
8787487 - 财政年份:2014
- 资助金额:
$ 73.54万 - 项目类别:
Aldosterone, nitric oxide, myocardial fibrosis, and capillary loss in ESRD
ESRD 中的醛固酮、一氧化氮、心肌纤维化和毛细血管损失
- 批准号:
8506326 - 财政年份:2013
- 资助金额:
$ 73.54万 - 项目类别:
Aldosterone, nitric oxide, myocardial fibrosis, and capillary loss in ESRD
ESRD 中的醛固酮、一氧化氮、心肌纤维化和毛细血管损失
- 批准号:
8723818 - 财政年份:2013
- 资助金额:
$ 73.54万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 73.54万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 73.54万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 73.54万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 73.54万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 73.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 73.54万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 73.54万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 73.54万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 73.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 73.54万 - 项目类别:
Studentship