Novel therapeutics for the targeted eradication of DDR-defective tumors
靶向根除 DDR 缺陷肿瘤的新疗法
基本信息
- 批准号:10734414
- 负责人:
- 金额:$ 65.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-25 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlkylating AgentsAlkylationApoptosisBiological AvailabilityCellsCentral Nervous System AgentsChemicalsClinicColon CarcinomaCyclizationCytosineDNADNA AlkylationDNA DamageDNA Interstrand CrosslinkingDNA RepairDNA Repair DisorderDNA Repair GeneDataDealkylationDevelopmentDrug resistanceExcisionFutile CyclingGenesGeneticGenomeGenomicsGlioblastomaGliomaGoalsGrantGuanosineHumanHypermethylationIonsKineticsLesionMGMT geneMalignant NeoplasmsMalignant neoplasm of lungMediatingMethyltransferaseMismatch RepairModelingModificationMutagensNon-Small-Cell Lung CarcinomaOligonucleotidesOralPathway interactionsPatientsPenetrationPharmaceutical PreparationsPhenotypePolymeraseProdrugsProliferatingRadiation therapyReactionResearchResectedResistanceStructureTestingTherapeuticTherapeutic IndexThymineTimeTissuesToxic effectTransferaseTranslatingTranslationsWorkadductbench to bedsidechemotherapyclinically significantcrosslinkcytotoxicitydesignefficacy evaluationexperiencefunctional lossimprovedin vivoineffective therapiesinhibitormouse modelnew therapeutic targetnovelnovel strategiespromoterrepairedresponsesmall cell lung carcinomastandard of caresynergismsystemic toxicitytargeted agenttemozolomidetissue culturetreatment strategytrial designtumortumor specificity
项目摘要
PROJECT SUMMARY/ABSTRACT.
O6-Methylguanine methyltransferase (MGMT) reverts O6-alkylguanosine residues to guanosine via dealkylation
by SN2 displacement. MGMT is ubiquitously expressed in healthy tissue but is silenced (referred to as “MGMT–
“) in ~50% of glioblastomas (GBMs), most gliomas, and in up to 40% of colon cancers, 35% of small cell lung
cancers, and 25% of non-small cell lung cancers. MGMT– tumors are sensitized to DNA alkylation agents, such
as temozolomide (TMZ). This sensitization creates a therapeutic index (TI). TMZ prolongs survival of patients
with MGMT– GBM by ~8 mo. The cytotoxicity of TMZ relies on an intact DNA mismatch repair (MMR) pathway.
MMR silencing (referred to as “MMR–”) is the primary mechanism of acquired TMZ resistance, and second-line
therapies are ineffective. Despite >20 y of research, efforts to overcome MMR silencing-based resistance have
not been successful. Herein, we present 2-fluoroethylating agents (FEtAs) as novel, orally bioavailable com-
pounds that selectively eradicate MGMT–/MMR– GBM in vivo, without systemic toxicity. Our data indicate FEtAs
induce DNA interstrand cross-links (ICLs) only in MGMT– tumors by formation of O6-(2-fluoroethyl)guanosine
(O6FEtG), slow cyclization to an N1,O6-ethanoguanine (EG) intermediate, and ring-opening by the adjacent
cytosine. The slow rates of EG formation provide time for MGMT to reverse the initial alkylation in healthy (e.g.,
MGMT+) cells, leading to a high TI. In contrast, chloroethylation agents, such as mitozolomide, generate O6-(2-
chloroethyl)guanosine (O6ClEtG), which cyclizes to EG competitively with MGMT reversal. This leads to the
formation of ICLs or toxic DNA–MGMT cross-links, via opening of EG by MGMT, in healthy cells. Additionally,
the chloroethylsulfide formed on MGMT reversal of O6ClEtG converts to a reactive episulfonium ion, which also
cross-links MGMT to DNA, while MGMT reversal of O6FEtG creates a stable fluoroethylsulfide. Together, these
differences lend a higher MGMT TI to FEtAs suggesting they are likely to display improved tolerability in humans.
Since ICL toxicity is MMR-independent, FEtAs retain activity in TMZ-resistant, MMR– tumors. Here we will study
the amount of O6FEtG formed from FEtAs and the rate of its reversal by MGMT. We will characterize the structure
and reaction kinetics of the ICLs using oligonucleotides containing a single O6FEtG. We will conduct studies to
improve FEtA CNS penetration. We will probe for synergy between FEtAs and DDR inhibitors, other DNA repair
deficiencies, and radiotherapy. Completion of this research will lead to the identification of novel chemotherapies
with high CNS penetration that operate by a novel, MMR-independent mechanism, thereby addressing acquired
TMZ resistance. As FEtAs are structurally-related to TMZ, we expect rapid translation to the clinic. MGMT is
silenced in a range of tumor types; this work will set the stage to evaluate FEtAs as treatments for other MGMT–
tumors, alone or in combination regimes. Finally, to the best of our knowledge, the relative rates of DNA chemical
modification and repair have not previously been exploited to obtain tumor specificity; we believe this “kinetic
lethal” strategy may constitute the first iteration of a new approach to targeted chemotherapeutic design.
项目摘要/摘要。
O6-甲基鸟嘌呤甲基转移酶 (MGMT) 通过脱烷基作用将 O6-烷基鸟苷残基还原为鸟苷
通过 SN2 位移。 MGMT 在健康组织中普遍表达,但被沉默(称为“MGMT-
“)约 50% 的胶质母细胞瘤 (GBM)、大多数神经胶质瘤、高达 40% 的结肠癌、35% 的小细胞肺癌
癌症和 25% 的非小细胞肺癌。 MGMT——肿瘤对 DNA 烷基化剂敏感,例如
如替莫唑胺(TMZ)。这种敏化产生了治疗指数(TI)。 TMZ 延长患者生存期
MGMT-GBM 约 8 个月。 TMZ 的细胞毒性依赖于完整的 DNA 错配修复 (MMR) 途径。
MMR沉默(简称“MMR-”)是TMZ获得性耐药的主要机制,二线药物
治疗无效。尽管进行了超过 20 年的研究,克服 MMR 沉默耐药性的努力仍然取得了进展。
没有成功。在此,我们提出 2-氟乙基化剂 (FEtAs) 作为新型口服生物可利用的药物
体内选择性根除 MGMT-/MMR- GBM,且无全身毒性。我们的数据表明 FEtAs
仅在 MGMT- 肿瘤中通过形成 O6-(2-氟乙基)鸟苷诱导 DNA 链间交联 (ICL)
(O6FEtG),缓慢环化为 N1,O6-乙醇鸟嘌呤 (EG) 中间体,并通过相邻的开环
胞嘧啶。 EG 形成的缓慢速率为 MGMT 逆转健康动物(例如,
MGMT+) 细胞,导致高 TI。相反,氯乙基化剂,例如米托唑胺,产生 O6-(2-
氯乙基)鸟苷 (O6ClEtG),与 MGMT 逆转竞争性环化为 EG。这导致
通过 MGMT 打开 EG,在健康细胞中形成 ICL 或有毒 DNA-MGMT 交联。此外,
O6ClEtG 的 MGMT 反转时形成的氯乙硫醚转化为活性表锍离子,这也
MGMT 与 DNA 交联,而 O6FEtG 的 MGMT 逆转会产生稳定的氟乙基硫醚。在一起,这些
差异使 FEtAs 具有更高的 MGMT TI,表明它们可能在人类中表现出更高的耐受性。
由于 ICL 毒性与 MMR 无关,因此 FEtAs 在 TMZ 耐药、MMR 肿瘤中保留活性。在这里我们将学习
由 FEtAs 形成的 O6FEtG 的量及其被 MGMT 逆转的速率。我们将表征结构
以及使用含有单个 O6FEtG 的寡核苷酸的 ICL 的反应动力学。我们将进行研究
提高 FETA 中枢神经系统的渗透性。我们将探讨 FEtAs 和 DDR 抑制剂以及其他 DNA 修复之间的协同作用
缺陷和放射治疗。这项研究的完成将导致新型化疗药物的确定
具有高中枢神经系统渗透性,通过一种新颖的、独立于 MMR 的机制运作,从而解决获得性
替莫唑胺耐药。由于 FEtAs 在结构上与 TMZ 相关,我们期望快速转化为临床。 MGMT 是
在一系列肿瘤类型中被沉默;这项工作将为评估 FEtAs 作为其他 MGMT 的治疗方法奠定基础——
单独或联合治疗肿瘤。最后,据我们所知,DNA 化学的相对速率
此前尚未利用修饰和修复来获得肿瘤特异性;我们相信这种“动能
“致命”策略可能构成靶向化疗设计新方法的第一次迭代。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ranjit Bindra其他文献
Ranjit Bindra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ranjit Bindra', 18)}}的其他基金
Targeting Defective DNA Damage Response Pathways in IDH1/2-mutant AML
针对 IDH1/2 突变 AML 中的缺陷 DNA 损伤反应途径
- 批准号:
10345137 - 财政年份:2022
- 资助金额:
$ 65.42万 - 项目类别:
Targeting Defective DNA Damage Response Pathways in IDH1/2-mutant AML
针对 IDH1/2 突变 AML 中的缺陷 DNA 损伤反应途径
- 批准号:
10818177 - 财政年份:2022
- 资助金额:
$ 65.42万 - 项目类别:
Targeting Defective DNA Damage Response Pathways in IDH1/2-mutant AML
针对 IDH1/2 突变 AML 中的缺陷 DNA 损伤反应途径
- 批准号:
10561637 - 财政年份:2022
- 资助金额:
$ 65.42万 - 项目类别:
Center of Innovation for Brain Tumor Therapeutics - Diversity Supplement
脑肿瘤治疗创新中心 - 多样性补充
- 批准号:
10597735 - 财政年份:2021
- 资助金额:
$ 65.42万 - 项目类别:
Novel DNA damage response inhibitor and alkylator combinations for GBM
用于 GBM 的新型 DNA 损伤反应抑制剂和烷化剂组合
- 批准号:
10305365 - 财政年份:2021
- 资助金额:
$ 65.42万 - 项目类别:
Novel DNA damage response inhibitor and alkylator combinations for GBM
用于 GBM 的新型 DNA 损伤反应抑制剂和烷化剂组合
- 批准号:
10492774 - 财政年份:2021
- 资助金额:
$ 65.42万 - 项目类别:
相似海外基金
Differential resistance mechanisms to monofunctional vs bifunctional alkylating agents in glioma
神经胶质瘤对单功能烷化剂与双功能烷化剂的不同耐药机制
- 批准号:
10374792 - 财政年份:2021
- 资助金额:
$ 65.42万 - 项目类别:
Elucidation and prevention of the mechanism of hepatic sinusoidal obstruction syndrome (SOS) induced by DNA alkylating agents
DNA烷化剂诱发肝窦阻塞综合征(SOS)机制的阐明和预防
- 批准号:
21K15255 - 财政年份:2021
- 资助金额:
$ 65.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Differential resistance mechanisms to monofunctional vs bifunctional alkylating agents in glioma
神经胶质瘤对单功能烷化剂与双功能烷化剂的不同耐药机制
- 批准号:
10570900 - 财政年份:2021
- 资助金额:
$ 65.42万 - 项目类别:
Development of individualized therapy by elucidation of molecular mechanisms for hypermutation phenotype induced by treatment with alkylating agents in glioma
通过阐明神经胶质瘤中烷化剂治疗诱导的超突变表型的分子机制来开发个体化治疗
- 批准号:
18K09004 - 财政年份:2018
- 资助金额:
$ 65.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reversing intrinsic cancer cell resistance to alkylating agents by histone deacetylase inhibition
通过组蛋白脱乙酰酶抑制逆转癌细胞对烷化剂的内在耐药性
- 批准号:
214657440 - 财政年份:2012
- 资助金额:
$ 65.42万 - 项目类别:
Research Grants
Rerouting alkylating agents to the mitochondria for cancer therapy
将烷化剂重新路由至线粒体用于癌症治疗
- 批准号:
247842 - 财政年份:2011
- 资助金额:
$ 65.42万 - 项目类别:
Studentship Programs
Novel approaches to enhance tumor cell cytotoxicity of alkylating agents
增强烷化剂肿瘤细胞细胞毒性的新方法
- 批准号:
8105413 - 财政年份:2010
- 资助金额:
$ 65.42万 - 项目类别:
Novel approaches to enhance tumor cell cytotoxicity of alkylating agents
增强烷化剂肿瘤细胞细胞毒性的新方法
- 批准号:
8271313 - 财政年份:2010
- 资助金额:
$ 65.42万 - 项目类别:
Novel approaches to enhance tumor cell cytotoxicity of alkylating agents
增强烷化剂肿瘤细胞细胞毒性的新方法
- 批准号:
8730259 - 财政年份:2010
- 资助金额:
$ 65.42万 - 项目类别:
Novel approaches to enhance tumor cell cytotoxicity of alkylating agents
增强烷化剂肿瘤细胞细胞毒性的新方法
- 批准号:
8676463 - 财政年份:2010
- 资助金额:
$ 65.42万 - 项目类别:














{{item.name}}会员




