Global Deep Learning Initiative to Understand Outcomes in Major Depression

全球深度学习计划了解重度抑郁症的结果

基本信息

项目摘要

ABSTRACT Major depressive disorder (MDD) is the leading cause of disability worldwide, and around half of MDD patients have treatment-resistant depression. The use and clinical benefit of rTMS have escalated greatly in recent years. As only 40-50% of patients respond to current standard rTMS, there is great interest in predicting which patients are likely to respond, what brain features best predict response, and how these features relate to the core biosignatures of MDD. To address this, and responding to NIH’s call for Precision Medicine approaches, our Global Deep Learning Initiative to Understand Outcomes in Major Depression unites international leaders in MDD and rTMS research, neuroimaging, and AI to identify generalizable predictors of rTMS response, and assess how they relate to brain biomarkers of MDD. Two major innovations are proposed. First, we use novel deep learning methods, based on convolutional neural networks, to extract predictive features from multimodal brain images (sMRI, DTI, and rsfMRI); tactics applied in whole-brain and surface-based mapping of brain function and structure, DVAEs for feature extraction, and transfer learning (to learn from auxiliary datasets and tasks) will distill predictive features while protecting individual privacy. CNNs trained on multimodal brain maps for our predictive tasks will distill additional layers of information that have not yet been fully exploited in MDD research, to better predict clinical status and treatment response. Second, our worldwide ENIGMA-MDD network will provide diverse test data from globally representative populations, to ensure that our predictive models do not break down when tested on diverse data. ENIGMA’s harmonized extraction of brain measures across worldwide cohorts will enhance rigor and ensure that analyses are well-powered and consistently performed. We include an important partnership with REST-meta-MDD, a Chinese consortium collecting multimodal imaging data from patients with MDD, to test the generalizability of our predictive models. The likely outcome of our work is a set of pre-screening tools to predict who will respond best to rTMS, and a deeper understanding of the brain signatures of MDD that predict treatment outcomes following rTMS. All tools will be made public via NITRC and ENIGMA websites, and will be tested across our ENIGMA network, guaranteeing impact of the work for large- scale outcome prediction within and outside of MDD research.
抽象的 重度抑郁症 (MDD) 是全球残疾的主要原因,大约一半的 MDD 患者 患有难治性抑郁症。近年来,rTMS 的使用和临床效益大幅提升。 由于只有 40-50% 的患者对当前标准 rTMS 有反应,因此人们对预测哪些患者有很大兴趣 可能会做出反应,哪些大脑特征最能预测反应,以及这些特征与核心有何关系 MDD 的生物特征。为了解决这个问题,并响应 NIH 对精准医学方法的呼吁,我们 旨在了解严重抑郁症结果的全球深度学习计划联合国际领导人 MDD 和 rTMS 研究、神经影像学和人工智能,以确定 rTMS 反应的通用预测因子,以及 评估它们与 MDD 大脑生物标志物的关系。提出了两项​​主要创新。首先我们用小说 基于卷积神经网络的深度学习方法,从多模态中提取预测特征 脑部图像(sMRI、DTI 和 rsfMRI);用于全脑和基于表面的大脑功能绘图的策略 和结构,用于特征提取的 DVAE 和迁移学习(从辅助数据集和任务中学习)将 在保护个人隐私的同时提取预测特征。 CNN 在多模式脑图上进行训练,以供我们使用 预测任务将提炼出尚未在 MDD 研究中充分利用的额外信息层, 更好地预测临床状态和治疗反应。其次,我们的全球 ENIGMA-MDD 网络将 提供来自全球代表性人群的多样化测试数据,以确保我们的预测模型不会 在不同数据上进行测试时会崩溃。 ENIGMA 在全球范围内协调提取大脑测量值 队列将提高严谨性并确保分析有力且一致地进行。我们包括 与 REST-meta-MDD 建立了重要的合作伙伴关系,REST-meta-MDD 是一个中国联盟,收集多模态成像数据 MDD 患者,以测试我们的预测模型的普遍性。我们工作的可能结果是一组 预筛选工具来预测谁对 rTMS 反应最好,并更深入地了解大脑 MDD 特征可预测 rTMS 后的治疗结果。所有工具将通过 NITRC 公开 ENIGMA 网站,并将在我们的 ENIGMA 网络上进行测试,保证工作对大型- MDD 研究内外的规模结果预测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roberto Goya-Maldonado其他文献

Roberto Goya-Maldonado的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 66.38万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 66.38万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了