Global Deep Learning Initiative to Understand Outcomes in Major Depression
全球深度学习计划了解重度抑郁症的结果
基本信息
- 批准号:10735255
- 负责人:
- 金额:$ 66.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdverse effectsAntidepressive AgentsArtificial IntelligenceAustraliaBiological MarkersBrainBrain DiseasesBrain MappingBrain imagingBrain regionChinaChineseClassificationClinicalClinical DataClinical assessmentsCodeDataData SetDiagnosisDiagnosticDiffusionDiseaseDisease remissionDouble-Blind MethodElectroconvulsive TherapyEnsureEthicsFunctional Magnetic Resonance ImagingGermanyGoalsGraphHamilton Rating Scale for DepressionHybridsIndividualInternationalInterventionLearningLegalMRI ScansMagnetic Resonance ImagingMajor Depressive DisorderMapsMeasuresMental DepressionMethodsModelingMontgomery and Asberg depression rating scaleMorbidity - disease rateMultimodal ImagingNeurosciencesOutcomeParticipantPatientsPatternPerformancePersonsPharmaceutical PreparationsPharmacotherapyPhenotypePopulationPrediction of Response to TherapyPredictive FactorPrivacyProceduresPsychiatryPsychotherapyRandomized, Controlled TrialsRecoveryResearchResearch PersonnelSamplingScanningScreening procedureSeveritiesStructureSurfaceSymptomsTestingTrainingTreatment ProtocolsTreatment outcomeUnited States National Institutes of HealthWorkalternative treatmentartificial intelligence methodbiobankbiosignaturebrain basedbrain magnetic resonance imagingclinical predictorscohortcombatconvolutional neural networkdata exchangedata harmonizationdeep learningdeep learning modeldepressive symptomsdisabilitydiverse dataexperiencefeature extractionimaging modalityimprovedinnovationinterestlearning strategymultimodal neuroimagingmultimodalityneuroimagingneuromechanismnoveloutcome predictionprecision medicinepredicting responsepredictive modelingpredictive signaturerepetitive transcranial magnetic stimulationresponsetooltransfer learningtreatment durationtreatment effecttreatment responsetreatment-resistant depressionweb site
项目摘要
ABSTRACT
Major depressive disorder (MDD) is the leading cause of disability worldwide, and around half of MDD patients
have treatment-resistant depression. The use and clinical benefit of rTMS have escalated greatly in recent years.
As only 40-50% of patients respond to current standard rTMS, there is great interest in predicting which patients
are likely to respond, what brain features best predict response, and how these features relate to the core
biosignatures of MDD. To address this, and responding to NIH’s call for Precision Medicine approaches, our
Global Deep Learning Initiative to Understand Outcomes in Major Depression unites international leaders in
MDD and rTMS research, neuroimaging, and AI to identify generalizable predictors of rTMS response, and
assess how they relate to brain biomarkers of MDD. Two major innovations are proposed. First, we use novel
deep learning methods, based on convolutional neural networks, to extract predictive features from multimodal
brain images (sMRI, DTI, and rsfMRI); tactics applied in whole-brain and surface-based mapping of brain function
and structure, DVAEs for feature extraction, and transfer learning (to learn from auxiliary datasets and tasks) will
distill predictive features while protecting individual privacy. CNNs trained on multimodal brain maps for our
predictive tasks will distill additional layers of information that have not yet been fully exploited in MDD research,
to better predict clinical status and treatment response. Second, our worldwide ENIGMA-MDD network will
provide diverse test data from globally representative populations, to ensure that our predictive models do not
break down when tested on diverse data. ENIGMA’s harmonized extraction of brain measures across worldwide
cohorts will enhance rigor and ensure that analyses are well-powered and consistently performed. We include
an important partnership with REST-meta-MDD, a Chinese consortium collecting multimodal imaging data from
patients with MDD, to test the generalizability of our predictive models. The likely outcome of our work is a set
of pre-screening tools to predict who will respond best to rTMS, and a deeper understanding of the brain
signatures of MDD that predict treatment outcomes following rTMS. All tools will be made public via NITRC and
ENIGMA websites, and will be tested across our ENIGMA network, guaranteeing impact of the work for large-
scale outcome prediction within and outside of MDD research.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
                item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi }} 
- 发表时间:{{ item.publish_year }} 
- 期刊:
- 影响因子:{{ item.factor }}
- 作者:{{ item.authors }} 
- 通讯作者:{{ item.author }} 
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ patent.updateTime }}
Roberto Goya-Maldonado其他文献
Roberto Goya-Maldonado的其他文献
{{
              item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi }} 
- 发表时间:{{ item.publish_year }} 
- 期刊:
- 影响因子:{{ item.factor }}
- 作者:{{ item.authors }} 
- 通讯作者:{{ item.author }} 
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:MR/S03398X/2 
- 财政年份:2024
- 资助金额:$ 66.38万 
- 项目类别:Fellowship 
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:2338423 
- 财政年份:2024
- 资助金额:$ 66.38万 
- 项目类别:Continuing Grant 
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:EP/Y001486/1 
- 财政年份:2024
- 资助金额:$ 66.38万 
- 项目类别:Research Grant 
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:MR/X03657X/1 
- 财政年份:2024
- 资助金额:$ 66.38万 
- 项目类别:Fellowship 
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:2348066 
- 财政年份:2024
- 资助金额:$ 66.38万 
- 项目类别:Standard Grant 
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:AH/Z505481/1 
- 财政年份:2024
- 资助金额:$ 66.38万 
- 项目类别:Research Grant 
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:10107647 
- 财政年份:2024
- 资助金额:$ 66.38万 
- 项目类别:EU-Funded 
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:2341402 
- 财政年份:2024
- 资助金额:$ 66.38万 
- 项目类别:Standard Grant 
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:10106221 
- 财政年份:2024
- 资助金额:$ 66.38万 
- 项目类别:EU-Funded 
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:AH/Z505341/1 
- 财政年份:2024
- 资助金额:$ 66.38万 
- 项目类别:Research Grant 

 刷新
              刷新
            
















 {{item.name}}会员
              {{item.name}}会员
            



