Global Deep Learning Initiative to Understand Outcomes in Major Depression
全球深度学习计划了解重度抑郁症的结果
基本信息
- 批准号:10735255
- 负责人:
- 金额:$ 66.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdverse effectsAntidepressive AgentsArtificial IntelligenceAustraliaBiological MarkersBrainBrain DiseasesBrain MappingBrain imagingBrain regionChinaChineseClassificationClinicalClinical DataClinical assessmentsCodeDataData SetDiagnosisDiagnosticDiffusionDiseaseDisease remissionDouble-Blind MethodElectroconvulsive TherapyEnsureEthicsFunctional Magnetic Resonance ImagingGermanyGoalsGraphHamilton Rating Scale for DepressionHybridsIndividualInternationalInterventionLearningLegalMRI ScansMagnetic Resonance ImagingMajor Depressive DisorderMapsMeasuresMental DepressionMethodsModelingMontgomery and Asberg depression rating scaleMorbidity - disease rateMultimodal ImagingNeurosciencesOutcomeParticipantPatientsPatternPerformancePersonsPharmaceutical PreparationsPharmacotherapyPhenotypePopulationPrediction of Response to TherapyPredictive FactorPrivacyProceduresPsychiatryPsychotherapyRandomized, Controlled TrialsRecoveryResearchResearch PersonnelSamplingScanningScreening procedureSeveritiesStructureSurfaceSymptomsTestingTrainingTreatment ProtocolsTreatment outcomeUnited States National Institutes of HealthWorkalternative treatmentartificial intelligence methodbiobankbiosignaturebrain basedbrain magnetic resonance imagingclinical predictorscohortcombatconvolutional neural networkdata exchangedata harmonizationdeep learningdeep learning modeldepressive symptomsdisabilitydiverse dataexperiencefeature extractionimaging modalityimprovedinnovationinterestlearning strategymultimodal neuroimagingmultimodalityneuroimagingneuromechanismnoveloutcome predictionprecision medicinepredicting responsepredictive modelingpredictive signaturerepetitive transcranial magnetic stimulationresponsetooltransfer learningtreatment durationtreatment effecttreatment responsetreatment-resistant depressionweb site
项目摘要
ABSTRACT
Major depressive disorder (MDD) is the leading cause of disability worldwide, and around half of MDD patients
have treatment-resistant depression. The use and clinical benefit of rTMS have escalated greatly in recent years.
As only 40-50% of patients respond to current standard rTMS, there is great interest in predicting which patients
are likely to respond, what brain features best predict response, and how these features relate to the core
biosignatures of MDD. To address this, and responding to NIH’s call for Precision Medicine approaches, our
Global Deep Learning Initiative to Understand Outcomes in Major Depression unites international leaders in
MDD and rTMS research, neuroimaging, and AI to identify generalizable predictors of rTMS response, and
assess how they relate to brain biomarkers of MDD. Two major innovations are proposed. First, we use novel
deep learning methods, based on convolutional neural networks, to extract predictive features from multimodal
brain images (sMRI, DTI, and rsfMRI); tactics applied in whole-brain and surface-based mapping of brain function
and structure, DVAEs for feature extraction, and transfer learning (to learn from auxiliary datasets and tasks) will
distill predictive features while protecting individual privacy. CNNs trained on multimodal brain maps for our
predictive tasks will distill additional layers of information that have not yet been fully exploited in MDD research,
to better predict clinical status and treatment response. Second, our worldwide ENIGMA-MDD network will
provide diverse test data from globally representative populations, to ensure that our predictive models do not
break down when tested on diverse data. ENIGMA’s harmonized extraction of brain measures across worldwide
cohorts will enhance rigor and ensure that analyses are well-powered and consistently performed. We include
an important partnership with REST-meta-MDD, a Chinese consortium collecting multimodal imaging data from
patients with MDD, to test the generalizability of our predictive models. The likely outcome of our work is a set
of pre-screening tools to predict who will respond best to rTMS, and a deeper understanding of the brain
signatures of MDD that predict treatment outcomes following rTMS. All tools will be made public via NITRC and
ENIGMA websites, and will be tested across our ENIGMA network, guaranteeing impact of the work for large-
scale outcome prediction within and outside of MDD research.
摘要
重度抑郁症(MDD)是全球残疾的主要原因,约有一半的MDD患者
患有难治性抑郁症近年来,rTMS的使用和临床受益大大增加。
由于只有40 - 50%的患者对目前的标准rTMS有反应,
哪些大脑特征最能预测反应,以及这些特征与核心的关系
MDD的生物特征。为了解决这个问题,并响应NIH对精准医学方法的呼吁,我们的
了解大萧条结果的全球深度学习倡议联合国际领导人,
MDD和rTMS研究、神经影像学和AI,以确定rTMS反应的可推广预测因素,以及
评估它们与抑郁症大脑生物标志物的关系。提出了两个重大创新。首先,我们用小说
基于卷积神经网络的深度学习方法,用于从多模态数据中提取预测特征
脑成像(sMRI、DTI和rsfMRI);应用于全脑和基于表面的脑功能映射的策略
用于特征提取的DVAE和迁移学习(从辅助数据集和任务中学习)将
提取预测功能,同时保护个人隐私。CNN在多模态大脑地图上训练,
预测任务将提取尚未在MDD研究中充分利用的额外信息层,
以更好地预测临床状态和治疗反应。其次,我们的全球ENIGMA-MDD网络将
提供来自全球代表性人群的各种测试数据,以确保我们的预测模型不会
在不同的数据上进行测试时,ENIGMA在全球范围内统一提取大脑测量数据
分组将提高严谨性,并确保分析具有良好的效力和一致性。我们包括
与REST-meta-MDD建立了重要的合作伙伴关系,这是一个中国联盟,收集来自
MDD患者,以测试我们的预测模型的普遍性。我们工作的可能结果是
预筛选工具,以预测谁将对rTMS反应最好,以及对大脑的更深入了解
MDD的特征,预测rTMS后的治疗结果。所有工具将通过NITRC公开,
ENIGMA网站,并将在我们的ENIGMA网络进行测试,保证工作的影响大-
MDD研究内外的量表结果预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roberto Goya-Maldonado其他文献
Roberto Goya-Maldonado的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 66.38万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 66.38万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 66.38万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 66.38万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 66.38万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 66.38万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 66.38万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 66.38万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 66.38万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 66.38万 - 项目类别:
Research Grant














{{item.name}}会员




