Severity Predictors Integrating salivary Transcriptomics and proteomics with Multi neural network Intelligence in SARS-CoV2 infection in Children (SPITS MISC)
将唾液转录组学和蛋白质组学与多神经网络智能相结合用于儿童 SARS-CoV2 感染的严重程度预测 (SPITS MISC)
基本信息
- 批准号:10733697
- 负责人:
- 金额:$ 71.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAdultAnti-Inflammatory AgentsAreaArtificial IntelligenceBioinformaticsBiological MarkersBiological TestingBloodBody FluidsCOVID-19COVID-19 impactCOVID-19 severityCell physiologyCharacteristicsChildChildhoodClinicalClinical DataClinical InformaticsCoronavirusCritically ill childrenDataDevelopmentDevicesDiagnosticDiseaseDisease ProgressionDisease stratificationEarly identificationEarly treatmentElectronic Health RecordEnsureEpigenetic ProcessFutureGoalsHealthcareImmune responseIndividualInfectionInflammatoryIntelligenceInterleukin-10InterventionKnowledgeMeasurementMeasuresMicroRNAsModalityModelingMolecularMolecular ProfilingMultisystem Inflammatory Syndrome in ChildrenOutcomePatientsPhasePhenotypePost-Transcriptional RegulationPrognosisProteomicsPublic HealthRegulationResearchResource AllocationResourcesRespiratory FailureRiskRisk FactorsRoleSARS-CoV-2 exposureSARS-CoV-2 genomeSARS-CoV-2 infectionSalivaSalivarySamplingSeveritiesSeverity of illnessSignal TransductionSiteSyndromeSystemTNF geneTechniquesTechnologyTestingTrainingVirus DiseasesVirus Replicationcloud basedcomorbiditycytokinedisease phenotypedisorder riskepigenetic regulationexperiencehealth datahealth determinantsimmunoregulationimproved outcomeinnovationmobile applicationmortalityneural networknovelpandemic diseasepersonalized medicinepoint of careportabilitypotential biomarkerpredictive modelingprofiles in patientsprognostic modelrisk stratificationsevere COVID-19socialsocial determinantssocial health determinantstargeted treatmenttooltranscriptomicsweb portal
项目摘要
Abstract
Children have been disproportionately less impacted by the Corona Virus Disease 2019 (COVID-19) caused
by the Severe Acute Respiratory Syndrome Corona Virus 2 (SAR-CoV-2) compared to adults. However,
severe illnesses including Multisystem Inflammatory Syndrome (MIS-C) and respiratory failure have occurred
in a small proportion of children with SARS-CoV-2 infection. Nearly 80% of children with MIS-C are critically ill
with a 2-4% mortality rate. Currently there are no modalities to characterize the spectrum of disease severity
and predict which child with SARS-CoV-2 exposure will likely develop severe illness including MIS-C. Thus
there is an urgent need to develop a diagnostic modality to distinguish the varying phenotypes of disease and
risk stratify disease. The epigenetic changes in microRNA (miRNA) profiles that occur due to an infection can
impact disease severity by altering immune response and cytokine regulation which may be detected in body
fluids including saliva. Our long-term goal is to improve outcomes of children with SARS-CoV-2 by early
identification and treatment of those at risk for severe illness. Our central hypothesis is that a model that
integrates salivary biomarkers with social and clinical determinants of health will predict disease severity in
children with SARS-CoV-2 infection. The central hypothesis will be pursued through phased four specific aims.
The first two aims will be pursued during the R61 phase and include: 1) Define and compare the salivary
molecular host response in children with varying phenotypes (severe and non severe) SARS-CoV-2 infections
and 2) Develop and validate a sensitive and specific model to predict severe SARS-CoV-2 illness in children.
During the R33 phase we will pursue the following two aims: 3) Develop a portable, rapid device that quantifies
salivary miRNAs with comparable accuracy to predicate technology (qRT-PCR), and 4) Develop an artificial
intelligence (AI) assisted cloud and mobile system for early recognition of severe SARS-CoV-2 infection in
children. We will pursue the above aims using an innovative combination of salivaomics and bioinformatics,
analytic techniques of AI and clinical informatics. The proposed research is significant because development of
a sensitive model to risk stratify disease is expected to improve outcomes of children with severe SARS-CoV-2
infection via early recognition and timely intervention. The proximate expected outcome of this proposal is
better understanding of the epigenetic regulation of host immune response to the viral infection which we
expect to lead to personalized therapy in the future. The results will have a positive impact immediately as it
will lead to the creation of patient profiles based on individual risk factors which can enable early identification
of severe disease and appropriate resource allocation during the pandemic.
摘要
儿童受到冠状病毒病2019(新冠肺炎)的影响小得不成比例
由严重急性呼吸综合征冠状病毒2(SAR-CoV-2)与成人进行比较。然而,
出现了包括多系统炎症综合征(MIS-C)和呼吸衰竭在内的严重疾病
在一小部分感染SARS-CoV-2的儿童中。近80%患有MIS-C的儿童病情危重
死亡率为2-4%。目前还没有模式来描述疾病严重程度的谱
并预测接触SARS-CoV-2病毒的儿童可能会患上包括MIS-C在内的严重疾病。因此,
迫切需要开发一种诊断模式来区分不同的疾病表型和
风险分层疾病。由于感染而发生的microRNA(MiRNA)图谱的表观遗传变化可能
通过改变体内可能检测到的免疫反应和细胞因子调节来影响疾病的严重性
包括唾液在内的液体。我们的长期目标是及早改善感染SARS-CoV-2的儿童的预后
对有严重疾病风险的人进行识别和治疗。我们的中心假设是一个模型
将唾液生物标记物与社会和临床健康决定因素相结合将预测
感染SARS-CoV-2的儿童。核心假设将通过分阶段的四个具体目标来实现。
前两个目标将在R61阶段实现,包括:1)定义和比较唾液
不同表型(严重和非严重)SARS-CoV-2感染儿童的分子宿主反应
2)建立和验证预测儿童严重SARS-CoV-2疾病的敏感和特异的模型。
在R33阶段,我们将追求以下两个目标:3)开发一种便携式、快速的量化设备
唾液miRNAs的准确性与预测技术(qRT-PCR)相当,以及4)开发出一种人造的
智能(AI)辅助云和移动系统早期识别严重SARS-CoV-2感染
孩子们。我们将利用唾液组学和生物信息学的创新组合来实现上述目标,
人工智能和临床信息学的分析技术。拟议的研究具有重要意义,因为
一种敏感的疾病风险分层模型有望改善严重SARS-CoV-2儿童的预后
通过早期识别和及时干预感染。这项提议的最接近预期结果是
更好地理解宿主对病毒感染的免疫反应的表观遗传调节
期望在未来带来个性化的治疗。结果将立即产生积极的影响,因为它
将导致根据个人风险因素创建患者档案,从而能够及早识别
在大流行期间控制严重疾病和适当的资源分配。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Daniel Hicks其他文献
Steven Daniel Hicks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Daniel Hicks', 18)}}的其他基金
Severity Predictors Integrating salivary Transcriptomics and proteomics with Multi neural network Intelligence in SARS-CoV2 infection in Children (SPITS MISC)
将唾液转录组学和蛋白质组学与多神经网络智能相结合用于儿童 SARS-CoV2 感染的严重程度预测 (SPITS MISC)
- 批准号:
10273618 - 财政年份:2021
- 资助金额:
$ 71.39万 - 项目类别:
Severity Predictors Integrating salivary Transcriptomics and proteomics with Multi neural network Intelligence in SARS-CoV2 infection in Children (SPITS MISC)
将唾液转录组学和蛋白质组学与多神经网络智能相结合用于儿童 SARS-CoV2 感染的严重程度预测 (SPITS MISC)
- 批准号:
10320490 - 财政年份:2021
- 资助金额:
$ 71.39万 - 项目类别:
Severity Predictors Integrating salivary Transcriptomics and proteomics with Multi neural network Intelligence in SARS-CoV2 infection in Children (SPITS MISC)
将唾液转录组学和蛋白质组学与多神经网络智能相结合用于儿童 SARS-CoV2 感染的严重程度预测 (SPITS MISC)
- 批准号:
10847809 - 财政年份:2021
- 资助金额:
$ 71.39万 - 项目类别:
Poly-omic predictors of symptom duration and recovery for adolescent concussion
青少年脑震荡症状持续时间和恢复的多组学预测因子
- 批准号:
10323290 - 财政年份:2020
- 资助金额:
$ 71.39万 - 项目类别:
Poly-omic predictors of symptom duration and recovery for adolescent concussion
青少年脑震荡症状持续时间和恢复的多组学预测因子
- 批准号:
10552597 - 财政年份:2020
- 资助金额:
$ 71.39万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 71.39万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 71.39万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 71.39万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 71.39万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 71.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 71.39万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 71.39万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 71.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 71.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 71.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)