Novel Statistical Methods for Complex Time-to-Event Data in Cardiovascular Clinical Trials
心血管临床试验中复杂事件发生时间数据的新统计方法
基本信息
- 批准号:10734551
- 负责人:
- 金额:$ 33.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressArchivesBiological MarkersCardiopulmonaryCardiovascular systemCessation of lifeCharacteristicsChest PainClinical TrialsComplexCongestive Heart FailureDataDevelopmentEventFutureGoalsGrantHealthHeart failureHospitalizationInvestigationMachine LearningMeasuresMethodological StudiesMethodologyMethodsModelingModernizationMyocardial InfarctionOutcomePatientsProbabilityRandomizedRecording of previous eventsRecurrenceResearch DesignResearch PersonnelRisk AssessmentRisk FactorsSample SizeSeveritiesStatistical MethodsStrokeSubgroupTechniquesTestingTimeTime trendTreesWorkclassification treesconditioningcostdesignexperienceflexibilityfollow-upimprovedindexinginfluenza virus vaccinelife historymarkov modelmembermortalitynovelpredictive modelingpredictive toolsrandom forestresponserisk predictionsecondary analysissemiparametricstatisticstheoriestooltreatment effecttrial designuser-friendly
项目摘要
Project Summary:
Modern cardiovascular (CV) trials often collect data on a wide array of fatal and nonfatal events (e.g., heart
failure, heart attack, stroke, chest pain, and etc.) with different implications for patient health. In recent years,
new methods have started to emerge which seek to capture more events than the traditional endpoint of each
patient’s first event. However, to account for the totality of a composite endpoint while differentiating the
importance of its components (e.g., death vs CV hospitalization) is not easy. As it stands, investigators still lack
adequate tools to measure treatment effects, design future trials, assess risk factors, and build prediction models.
In this project, we address these gaps via four specific aims. In Aim 1, we consider a general class of
nonparametric effect-size estimands defined though pairwise comparison (both overall and subgroup-wise), in
which one component can be readily prioritized over another using a hierarchical rule of comparison. The inverse
probability censoring weighting (IPCW) and augmented inverse probability weighting (AIPW) techniques are
adapted to U-statistic estimators to correct for censoring bias and to improve efficiency (and thus reduce trial
cost) using patient data both pre- and post-randomization. In Aim 2, we develop routines to calculate power and
sample size for newly proposed methods for composite endpoints, such as the restricted mean time in favor of
treatment and while-alive loss rate, under both fixed and group sequential designs. In Aim 3, we propose novel
semiparametric regression models for composite endpoints following earlier work on the proportional win-
fractions (PW) model. In particular, the generalized semiparametric proportional odds (GSPO) model
accommodates nonproportional win fractions by extending traditional PO models to multiple events with ordered
severities. In Aim 4, we extend survival trees as a predictive tool from univariate to composite endpoints. Drawing
on classification trees for ordinal response, we develop time-integrated versions of the weighted Gini index and
twoing approach for node-splitting, and of a generalized concordance index for cross-validative pruning, thereby
accounting for both the timing and severity of the outcome events. The methods developed will be used for
secondary analyses of the recently concluded INfluenza Vaccine to Effectively Stop cardio-Thoracic Events and
Decompensated heart failure (INVESTED) trial (ClinicalTrials.gov: NCT02787044). Meanwhile, they will be
incorporated into new and existing R-packages on the Comprehensive R Archive Network (CRAN.R-project.org)
for public use by practitioners.
项目概要:
现代心血管(CV)试验经常收集大量致死性和非致死性事件的数据(例如,心脏
衰竭、心脏病发作、中风、胸痛等)对病人健康有不同的影响。近年来,
新的方法已经开始出现,它们试图捕获比每个事件的传统端点更多的事件。
患者的第一个事件。然而,为了说明复合终点的整体性,同时区分
其组件的重要性(例如,死亡vs CV住院)并不容易。目前,调查人员仍然缺乏
足够的工具来衡量治疗效果,设计未来的试验,评估风险因素和建立预测模型。
在这个项目中,我们通过四个具体目标来解决这些差距。在目标1中,我们考虑了一个一般类,
通过成对比较(总体和亚组)定义的非参数效应量被估量,
其中一个组件可以使用分级比较规则容易地优先于另一个组件。逆
概率截尾加权(IPCW)和增强逆概率加权(AIPW)技术,
适用于U统计量估计量,以纠正删失偏倚并提高效率(从而减少试验
成本)使用随机化前和随机化后的患者数据。在目标2中,我们开发了计算功率的例程,
新提出的复合终点方法的样本量,例如有利于
在固定和成组序贯设计下,治疗和存活期间丢失率。在目标3中,我们提出了新的
复合终点的半参数回归模型遵循早期关于比例胜利的工作,
分数(PW)模型。特别是,广义半参数比例优势(GSPO)模型
通过将传统的PO模型扩展到多个事件,
严重性在目标4中,我们将生存树作为预测工具从单变量扩展到复合终点。绘图
在有序响应的分类树上,我们开发了加权基尼指数的时间整合版本,
两个方法的节点分裂,和一个广义的一致性指数的交叉验证修剪,从而
考虑结果事件的时间和严重性。开发的方法将用于
最近得出结论的流感疫苗有效阻止心胸事件的二次分析,
失代偿性心力衰竭(INVESTED)试验(ClinicalTrials.gov:NCT 02787044)。与此同时,他们将
在Comprehensive R Archive Network(CRAN.R-project.org)上,将其整合到新的和现有的R软件包中
供从业人员公开使用。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A unified approach to the calculation of information operators in semiparametric models.
一种统一的方法,用于计算半参数模型中的信息运营商。
- DOI:10.1093/biomet/asaa037
- 发表时间:2020-12
- 期刊:
- 影响因子:2.7
- 作者:Mao LU
- 通讯作者:Mao LU
Statistical models for composite endpoints of death and non-fatal events: a review.
- DOI:10.1080/19466315.2021.1927824
- 发表时间:2021
- 期刊:
- 影响因子:1.8
- 作者:Mao L;Kim K
- 通讯作者:Kim K
A class of proportional win-fractions regression models for composite outcomes.
- DOI:10.1111/biom.13382
- 发表时间:2021-12
- 期刊:
- 影响因子:1.9
- 作者:Mao L;Wang T
- 通讯作者:Wang T
Editorial for "Relationship Between Patient-friendly Audiovisual Systems and MRI Contrast Agent to Adverse Reactions".
“患者友好型视听系统与 MRI 造影剂与不良反应之间的关系”的社论。
- DOI:10.1002/jmri.28991
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Mao,Lu
- 通讯作者:Mao,Lu
Identification of the outcome distribution and sensitivity analysis under weak confounder-instrument interaction
弱混杂因素-仪器相互作用下结果分布的识别和敏感性分析
- DOI:10.1016/j.spl.2022.109590
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Mao, Lu
- 通讯作者:Mao, Lu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lu Mao其他文献
Lu Mao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lu Mao', 18)}}的其他基金
Novel Statistical Methods for Complex Time-to-Event Data in Cardiovascular Clinical Trials
心血管临床试验中复杂事件发生时间数据的新统计方法
- 批准号:
10063907 - 财政年份:2019
- 资助金额:
$ 33.66万 - 项目类别:
Novel Statistical Methods for Complex Time-to-Event Data in Cardiovascular Clinical Trials
心血管临床试验中复杂事件发生时间数据的新统计方法
- 批准号:
10311488 - 财政年份:2019
- 资助金额:
$ 33.66万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 33.66万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 33.66万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 33.66万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 33.66万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 33.66万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 33.66万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 33.66万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 33.66万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 33.66万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 33.66万 - 项目类别:
Research Grant