Community-supported open-source software for computational neuroanatomy

社区支持的计算神经解剖学开源软件

基本信息

项目摘要

This project catalyzes research on brain networks by developing computational methods and software tools for analysis of diffusion MRI (dMRI) data and validating them in vivo. Understanding brain networks and their relation to neural computation is a major challenge in contemporary neuroscience. The proper function of brain networks is also inextricably tied to neurological, cognitive and psychiatric health. The networks that connect distinct regions in the brain are composed of large bundles that contain the axons of millions of neurons. DMRI is the only currently available method to measure the trajectory and physical properties of these bundles in the human brain non-invasively and a large body of research using dMRI has substantially contributed to our understanding of the way in which differences in brain connections contribute to individual differences across a spectrum of behaviors and clinical conditions. Progress in research and methods development has also translated into increasing use of dMRI in clinical applications. The project is led by the founders of the Diffusion Imaging in Python (DIPY) software project who have been working to invigorate the neuroimaging user and developer community by developing, implementing, disseminating, and maintaining important software tools. The proposed project pursues a next generation phase of development, in which the overall objective is to generate a platform to better utilize dMRI data in accordance with BRAIN 2.0 targets. To address current barriers to progress, we plan to address the following aims in the current proposal: Aim 1 will develop new tractometry methods that enhance the interpretability of dMRI data; Aim 2 will introduce new pre-processing algorithms including methods for susceptibility correction; Aim 3 will focus on improving computational performance using parallel computing within a single node (e.g., via use of graphical processing units) and across nodes (i.e., distributed computing); Aim 4 will focus on the validation of DIPY methods using publicly available human and non-human primate data. Overall, this work will enable impactful brain research and will facilitate subsequent clinical adoption of advanced computational methods using dMRI data.
该项目通过开发计算方法促进了对大脑网络的研究, 用于分析扩散MRI(dMRI)数据并在体内验证它们的软件工具。 理解大脑网络及其与神经计算的关系是一个重大挑战, 当代神经科学大脑网络的正常功能也与 神经、认知和精神健康。连接不同地区的网络 大脑由包含数百万神经元轴突的大束组成。DMRI是 目前唯一可用的方法来测量这些物体的轨迹和物理特性, 束在人类大脑中的非侵入性和大量的研究使用dMRI已经 大大有助于我们理解大脑中的差异 连接有助于在一系列行为和临床上的个体差异 条件研究和方法开发方面的进展也转化为越来越多的 在临床应用中使用dMRI。该项目由扩散成像的创始人领导, Python(DIPY)软件项目,他们一直致力于激励神经成像用户, 通过开发、实施、传播和维护重要的 软件工具。拟议的项目追求下一代发展阶段,其中 总体目标是生成一个平台,以便更好地利用dMRI数据 BRAIN 2.0目标。为了解决目前阻碍进展的障碍,我们计划解决以下问题 目标1将开发新的牵引测量方法,以增强 dMRI数据的可解释性;目标2将引入新的预处理算法,包括 磁化率校正方法;目标3将侧重于提高计算性能 使用单个节点内的并行计算(例如,通过使用图形处理单元)和 跨节点(即,目标4将侧重于验证DIPY方法 使用公开的人类和非人类灵长类动物数据。总的来说,这项工作将使 有影响力的大脑研究,并将促进后续的临床采用先进的 使用dMRI数据的计算方法。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An analysis-ready and quality controlled resource for pediatric brain white-matter research.
  • DOI:
    10.1038/s41597-022-01695-7
  • 发表时间:
    2022-10-12
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Richie-Halford, Adam;Cieslak, Matthew;Ai, Lei;Caffarra, Sendy;Covitz, Sydney;Franco, Alexandre R.;Karipidis, Iliana I.;Kruper, John;Milham, Michael;Avelar-Pereira, Barbara;Roy, Ethan;Sydnor, Valerie J.;Yeatman, Jason D.;Satterthwaite, Theodore D.;Rokem, Ariel;Abbott, Nicholas J.;Abbott, Nicholas J.;Anderson, John A. E.;Gagana, B.;Bleile, MaryLena;Bloomfield, Peter S.;Bottom, Vince;Bourque, Josiane;Boyle, Rory;Brynildsen, Julia K.;Calarco, Navona;Castrellon, Jaime J.;Chaku, Natasha;Chen, Bosi;Chopra, Sidhant;Coffey, Emily B. J.;Colenbier, Nigel;Cox, Daniel J.;Crippen, James Elliott;Crouse, Jacob J.;David, Szabolcs;Leener, Benjamin De;Delap, Gwyneth;Deng, Zhi-De;Dugre, Jules Roger;Eklund, Anders;Ellis, Kirsten;Ered, Arielle;Farmer, Harry;Faskowitz, Joshua;Finch, Jody E.;Flandin, Guillaume;Flounders, Matthew W.;Fonville, Leon;Frandsen, Summer B.;Garic, Dea;Garrido-Vasquez, Patricia;Gonzalez-Escamilla, Gabriel;Grogans, Shannon E.;Grotheer, Mareike;Gruskin, David C.;Guberman, Guido I.;Haggerty, Edda Briana;Hahn, Younghee;Hall, Elizabeth H.;Hanson, Jamie L.;Harel, Yann;Vieira, Bruno Hebling;Hettwer, Meike D.;Hobday, Harriet;Horien, Corey;Huang, Fan;Huque, Zeeshan M.;James, Anthony R.;Kahhale, Isabella;Kamhout, Sarah L. H.;Keller, Arielle S.;Khera, Harmandeep Singh;Kiar, Gregory;Kirk, Peter Alexander;Kohl, Simon H.;Korenic, Stephanie A.;Korponay, Cole;Kozlowski, Alyssa K.;Kraljevic, Nevena;Lazari, Alberto;Leavitt, Mackenzie J.;Li, Zhaolong;Liberati, Giulia;Lorenc, Elizabeth S.;Lossin, Annabelle Julina;Lotter, Leon D.;Lydon-Staley, David M.;Madan, Christopher R.;Magielse, Neville;Marusak, Hilary A.;Mayor, Julien;McGowan, Amanda L.;Mehta, Kahini P.;Meisler, Steven Lee;Michael, Cleanthis;Mitchell, Mackenzie E.;Morand-Beaulieu, Simon;Newman, Benjamin T.;Nielsen, Jared A.;O'Mara, Shane M.;Ojha, Amar;Omary, Adam;ozarslan, Evren;Parkes, Linden;Peterson, Madeline;Pines, Adam Robert;Pisanu, Claudia;Rich, Ryan R.;Sahoo, Ashish K.;Samara, Amjad;Sayed, Farah;Schneider, Jonathan Thore;Shaffer, Lindsay S.;Shatalina, Ekaterina;Sims, Sara A.;Sinclair, Skyler;Song, Jae W.;Hogrogian, Griffin Stockton;Tooley, Ursula A.;Tripathi, Vaibhav;Turker, Hamid B.;Valk, Sofie Louise;Wall, Matthew B.;Walther, Cheryl K.;Wang, Yuchao;Wegmann, Bertil;Welton, Thomas;Wiesman, Alex I.;Wiesman, Andrew G.;Wiesman, Mark;Winters, Drew E.;Yuan, Ruiyi;Zacharek, Sadie J.;Zajner, Chris;Zakharov, Ilya;Zammarchi, Gianpaolo;Zhou, Dale;Zimmerman, Benjamin;Zoner, Kurt;Satterthwaite, Theodore D.;Rokem, Ariel
  • 通讯作者:
    Rokem, Ariel
On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge.
  • DOI:
    10.1016/j.neuroimage.2021.118367
  • 发表时间:
    2021-10-15
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    De Luca A;Ianus A;Leemans A;Palombo M;Shemesh N;Zhang H;Alexander DC;Nilsson M;Froeling M;Biessels GJ;Zucchelli M;Frigo M;Albay E;Sedlar S;Alimi A;Deslauriers-Gauthier S;Deriche R;Fick R;Afzali M;Pieciak T;Bogusz F;Aja-Fernández S;Özarslan E;Jones DK;Chen H;Jin M;Zhang Z;Wang F;Nath V;Parvathaneni P;Morez J;Sijbers J;Jeurissen B;Fadnavis S;Endres S;Rokem A;Garyfallidis E;Sanchez I;Prchkovska V;Rodrigues P;Landman BA;Schilling KG
  • 通讯作者:
    Schilling KG
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eleftherios Garyfallidis其他文献

Eleftherios Garyfallidis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eleftherios Garyfallidis', 18)}}的其他基金

CRCNS: Community-supported open-source software for computational neuroanatomy
CRCNS:社区支持的计算神经解剖学开源软件
  • 批准号:
    9751295
  • 财政年份:
    2018
  • 资助金额:
    $ 55.8万
  • 项目类别:
CRCNS: Community-supported open-source software for computational neuroanatomy
CRCNS:社区支持的计算神经解剖学开源软件
  • 批准号:
    9912156
  • 财政年份:
    2018
  • 资助金额:
    $ 55.8万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 55.8万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 55.8万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了