3D Massive Training ANN for CAD for Colon Cancer in CT Colonography
CT 结肠成像中结肠癌 CAD 的 3D 大规模训练 ANN
基本信息
- 批准号:7500326
- 负责人:
- 金额:$ 29.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-26 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvanced DevelopmentBiological Neural NetworksClassClinicalColon CarcinomaColonoscopyColorectal PolypComputed Tomographic ColonographyComputer AssistedDataData SetDatabasesDetectionDevelopmentDiagnosticEducational process of instructingEnvironmentEvaluationFecesGoalsGoldIleocecal ValveImageLeadLesionLocationMethodsNumbersOpticsOutputPatientsPerformancePolypsProcessPropertyPurposeRateReaderReadingReceiver Operating CharacteristicsReportingResearchResearch PersonnelSchemeScoring MethodSecond OpinionsSensitivity and SpecificitySourceSpecificityStandards of Weights and MeasuresStructureSystemTechniquesTestingTimeTrainingTubebasecolorectal cancer screeningdetectordiagnostic accuracyimprovedoutcome forecastprogramsprototyperadiologistrectalresponsetwo-dimensional
项目摘要
DESCRIPTION (provided by applicant): The goal of the proposed research is to develop a 12three-dimensional massive-training artificial neural network (3D MTANN) for a computer-aided diagnostic (CAD) scheme for detection of colorectal polyps in computed tomographic colonography (CTC). The CAD output will be used as a "second opinion" to assist radiologists in detecting polyps for early detection of colorectal cancer. We will develop a CAD scheme incorporating a 3D MTANN for distinction between polyps and non-polyps (false positives) to reduce the number of false positives as much as possible, while maintaining a high sensitivity level. The 3D MTANN is a 3D volume-processing technique based on an artificial neural network which is capable of operating on image data directly. With input CTC volumes and the corresponding teaching volumes, the 3D MTANN can be trained for enhancement of polyps and suppression of non-polyps. We plan to develop a multiple 3D MTANN scheme (multi-3D MTANN) consisting of several expert 3D MTANNs for reduction of various types of false positives including folds, stool, the ileocecal valve, and rectal tubes. By applying a scoring method on the output volumes of the 3D MTANNs, polyp candidates will be classified as polyps or non-polyps. We will compare 3D MTANNs with two-dimensional MTANNs in terms of performance, efficiency, and properties. To obtain reliable evaluation results, we will collect a large database of CTC cases with and without polyps. By comparing with the diagnostic report of the gold standard optical colonoscopy on the same patients, we will determine "missed" cases which are false-negative cases when radiologists read CTC images. We will develop a prototype CAD workstation based on an advanced CAD system incorporating the multi-3D MTANN, and evaluate the performance of the workstation with the database by free-response receiver operating characteristic (FROC) analysis. We plan to carry out an observer performance study to evaluate the potential usefulness of the CAD scheme by use of multi-reader multi-case receiver operating characteristic analysis. The CAD system incorporating with the multi-3D MTANN will provide radiologists with the location of highly suspected lesions, and it has the potential to improve diagnostic accuracy in the early detection of colorectal cancer, which may lead to improved prognosis of patients.
描述(申请人提供):拟议研究的目标是开发用于计算机辅助诊断(CAD)方案的三维大规模训练人工神经网络(3D MTANN),用于在计算机断层扫描(CTC)中检测大肠息肉(CTC)。计算机辅助设计的结果将被用作“第二意见”,帮助放射科医生检测息肉,以便及早发现结直肠癌。我们将开发一种包含3D MTANN的CAD方案,用于区分息肉和非息肉(假阳性),以尽可能减少假阳性的数量,同时保持高灵敏度水平。3D MTANN是一种基于人工神经网络的三维体处理技术,可以直接对图像数据进行处理。通过输入CTC体积和相应的示教体积,3D MTANN可以被训练用于增强息肉和抑制非息肉。我们计划开发一种由多个专家3D MTANN组成的多3D MTANN方案(多3D MTANN),以减少各种类型的假阳性,包括褶皱、粪便、回盲瓣和直肠管。通过对3D MTANN的输出体积应用计分方法,息肉候选将被分类为息肉或非息肉。我们将在性能、效率和特性方面将3D MTANN与二维MTANN进行比较。为了获得可靠的评估结果,我们将收集有息肉和无息肉的CTC病例的大型数据库。通过与金标准光学结肠镜对同一患者的诊断报告进行比较,确定放射科医生在阅读CTC图像时漏诊的病例为假阴性病例。我们将基于先进的CAD系统,结合多维MTANN,开发一个原型CAD工作站,并使用数据库通过自由响应接收器工作特性(FROC)分析来评估该工作站的性能。我们计划开展一项观察者性能研究,通过多读取器多情况接收器操作特性分析来评估CAD方案的潜在有用性。该CAD系统与多维MTANN相结合,将为放射科医生提供高度怀疑病变的位置,并有可能提高结直肠癌早期诊断的准确性,从而可能改善患者的预后。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KENJI SUZUKI其他文献
KENJI SUZUKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KENJI SUZUKI', 18)}}的其他基金
3D Massive Training ANN for CAD for Colon Cancer in CT Colonography
CT 结肠成像中结肠癌 CAD 的 3D 大规模训练 ANN
- 批准号:
7261119 - 财政年份:2007
- 资助金额:
$ 29.17万 - 项目类别:
3D Massive Training ANN for CAD for Colon Cancer in CT Colonography
CT 结肠成像中结肠癌 CAD 的 3D 大规模训练 ANN
- 批准号:
7883412 - 财政年份:2007
- 资助金额:
$ 29.17万 - 项目类别:
3D Massive Training ANN for CAD for Colon Cancer in CT Colonography
CT 结肠成像中结肠癌 CAD 的 3D 大规模训练 ANN
- 批准号:
7655544 - 财政年份:2007
- 资助金额:
$ 29.17万 - 项目类别:
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 29.17万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 29.17万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 29.17万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 29.17万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 29.17万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 29.17万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 29.17万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 29.17万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 29.17万 - 项目类别:














{{item.name}}会员




