3D Massive Training ANN for CAD for Colon Cancer in CT Colonography

CT 结肠成像中结肠癌 CAD 的 3D 大规模训练 ANN

基本信息

  • 批准号:
    7655544
  • 负责人:
  • 金额:
    $ 29.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-26 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The goal of the proposed research is to develop a 12three-dimensional massive-training artificial neural network (3D MTANN) for a computer-aided diagnostic (CAD) scheme for detection of colorectal polyps in computed tomographic colonography (CTC). The CAD output will be used as a "second opinion" to assist radiologists in detecting polyps for early detection of colorectal cancer. We will develop a CAD scheme incorporating a 3D MTANN for distinction between polyps and non-polyps (false positives) to reduce the number of false positives as much as possible, while maintaining a high sensitivity level. The 3D MTANN is a 3D volume-processing technique based on an artificial neural network which is capable of operating on image data directly. With input CTC volumes and the corresponding teaching volumes, the 3D MTANN can be trained for enhancement of polyps and suppression of non-polyps. We plan to develop a multiple 3D MTANN scheme (multi-3D MTANN) consisting of several expert 3D MTANNs for reduction of various types of false positives including folds, stool, the ileocecal valve, and rectal tubes. By applying a scoring method on the output volumes of the 3D MTANNs, polyp candidates will be classified as polyps or non-polyps. We will compare 3D MTANNs with two-dimensional MTANNs in terms of performance, efficiency, and properties. To obtain reliable evaluation results, we will collect a large database of CTC cases with and without polyps. By comparing with the diagnostic report of the gold standard optical colonoscopy on the same patients, we will determine "missed" cases which are false-negative cases when radiologists read CTC images. We will develop a prototype CAD workstation based on an advanced CAD system incorporating the multi-3D MTANN, and evaluate the performance of the workstation with the database by free-response receiver operating characteristic (FROC) analysis. We plan to carry out an observer performance study to evaluate the potential usefulness of the CAD scheme by use of multi-reader multi-case receiver operating characteristic analysis. The CAD system incorporating with the multi-3D MTANN will provide radiologists with the location of highly suspected lesions, and it has the potential to improve diagnostic accuracy in the early detection of colorectal cancer, which may lead to improved prognosis of patients.
描述(由申请人提供):拟议研究的目标是开发一个12维的连续训练人工神经网络(3D MTANN),用于计算机辅助诊断(CAD)方案,用于计算机断层结肠成像(CTC)中检测结直肠息肉。CAD输出将被用作“第二意见”,以帮助放射科医生检测息肉,从而早期发现结直肠癌。我们将开发一种CAD方案,其中包含3D MTANN,用于区分息肉和非息肉(假阳性),以尽可能减少假阳性的数量,同时保持高灵敏度水平。3D MTANN是一种基于人工神经网络的3D体积处理技术,能够直接对图像数据进行操作。通过输入CTC体积和相应的教学体积,可以训练3D MTANN以增强息肉和抑制非息肉。我们计划开发一种多3D MTANN方案(多3D MTANN),由几个专家3D MTANN组成,用于减少各种类型的假阳性,包括褶皱、粪便、回盲瓣和直肠管。通过对3D MTANN的输出体积应用评分方法,息肉候选者将被分类为息肉或非息肉。我们将比较3D MTANN与二维MTANN的性能,效率和属性。为了获得可靠的评估结果,我们将收集一个大型的CTC病例数据库,包括有无息肉。通过与金标准光学结肠镜对同一患者的诊断报告进行比较,我们将确定放射科医生阅读CTC图像时的“漏诊”病例,即假阴性病例。我们将开发一个原型CAD工作站的基础上,先进的CAD系统,包括多三维MTANN,并评估工作站的性能与数据库的自由响应接收器工作特性(FROC)分析。我们计划进行观察员的性能研究,以评估潜在的有用性的CAD计划,通过使用多读者多情况下接收器的操作特性分析。CAD系统结合多三维MTANN将为放射科医生提供高度可疑病变的位置,它有可能提高结直肠癌早期检测的诊断准确性,这可能会导致改善患者的预后。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KENJI SUZUKI其他文献

KENJI SUZUKI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KENJI SUZUKI', 18)}}的其他基金

3D Massive Training ANN for CAD for Colon Cancer in CT Colonography
CT 结肠成像中结肠癌 CAD 的 3D 大规模训练 ANN
  • 批准号:
    7261119
  • 财政年份:
    2007
  • 资助金额:
    $ 29.17万
  • 项目类别:
3D Massive Training ANN for CAD for Colon Cancer in CT Colonography
CT 结肠成像中结肠癌 CAD 的 3D 大规模训练 ANN
  • 批准号:
    7500326
  • 财政年份:
    2007
  • 资助金额:
    $ 29.17万
  • 项目类别:
3D Massive Training ANN for CAD for Colon Cancer in CT Colonography
CT 结肠成像中结肠癌 CAD 的 3D 大规模训练 ANN
  • 批准号:
    7883412
  • 财政年份:
    2007
  • 资助金额:
    $ 29.17万
  • 项目类别:

相似海外基金

ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
  • 批准号:
    10935820
  • 财政年份:
    2023
  • 资助金额:
    $ 29.17万
  • 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
  • 批准号:
    10932514
  • 财政年份:
    2023
  • 资助金额:
    $ 29.17万
  • 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
  • 批准号:
    10704845
  • 财政年份:
    2023
  • 资助金额:
    $ 29.17万
  • 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
  • 批准号:
    10709085
  • 财政年份:
    2023
  • 资助金额:
    $ 29.17万
  • 项目类别:
Advanced Development of Gemini-DHAP
Gemini-DHAP的高级开发
  • 批准号:
    10760050
  • 财政年份:
    2023
  • 资助金额:
    $ 29.17万
  • 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
  • 批准号:
    10409385
  • 财政年份:
    2022
  • 资助金额:
    $ 29.17万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
  • 批准号:
    10710595
  • 财政年份:
    2022
  • 资助金额:
    $ 29.17万
  • 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
  • 批准号:
    10630975
  • 财政年份:
    2022
  • 资助金额:
    $ 29.17万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
  • 批准号:
    10710588
  • 财政年份:
    2022
  • 资助金额:
    $ 29.17万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
  • 批准号:
    10788051
  • 财政年份:
    2022
  • 资助金额:
    $ 29.17万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了