3D microprinting-enabled microinjection needle arrays for enhanced therapeutics delivery into the brain
支持 3D 微打印的显微注射针阵列可增强向大脑的治疗输送
基本信息
- 批准号:10761073
- 负责人:
- 金额:$ 40.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-10 至 2024-09-09
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressArchitectureBrainCellsDiffusionDimensionsEmbryoExtravasationFluorescenceGelGenesGoalsHealthHistologicHumanIn VitroIndividualIndustryIndustry StandardInjectionsLasersLateralLegal patentLentivirusMalignant NeoplasmsMarketingMeasuresMediatingMedicalMicrofluidicsMicroinjectionsModulusMusNeedlesNeurodegenerative DisordersNeurogliaNeurologicOutcomeOutputPainPenetrationPerformancePrintingProtocols documentationPuncture procedureResearchRetrievalSepharoseShapesSideSiteSolidStainless SteelSurvival RateSuspensionsTechnologyTherapeuticTissuesTraumatic Brain InjuryViral VectorWritingZebrafishbrain parenchymabrain tissueclinical applicationdesignefficacy evaluationimprovedin vivoinnovationmanufacturenanoparticlenerve stem cellnoveloperationparticlepressureprototypespinal cord and brain injurystem cell deliverystem cell survivalstem cellstissue injurytooltwo photon microscopytwo-photon
项目摘要
PROJECT SUMMARY
Microinjection technologies underlie many research and clinical applications that require gene and cell delivery,
including studies and emerging treatments of neurological conditions (e.g., neurodegenerative diseases,
traumatic brain injury, and cancer). Unfortunately, challenges associated with the microinjection tools by which
the viral vectors and cells inherent in these applications are delivered into brain tissues remain major barriers in
these rapidly growing fields. Although widely used, the currently used industry standard needles (ISNs) comprise
one needle with a single output port at the tip and are associated with a variety of validated customer pain points.
In particular, (1) the physical size of therapeutics such as lentiviral particles (80–100 nm) and stem cells (>10
μm) restricts ISN-mediated delivery into a single injection site inherently restricts the effective coverage range;
(2) the single injection site for ISNs can also result in inhomogeneous distributions of delivered therapeutics,
which can be detrimental to efficacy; and (3) the shape and size of ISNs can lead to brain tissue injury.
Consequently, alternative, novel microinjection tools for both gene and cell delivery are in critical demand.
The objective of this proposal is to develop an entirely new class of microneedle arrays (MNAs) that can be
realized to simultaneously address all three aforementioned pain points of ISNs. The working hypothesis is that
the minimal viable product (MVP) will transform microinjection outcomes via unparalleled versatility in realizing
geometrically sophisticated MNAs innovations, improve the efficacy of delivering therapeutics to the brain and
reducing microinjection-associated tissue damage. Preliminary studies demonstrated the ability of 3D
microprinting-enabled microneedle arrays (MNAs) delivery strategy to penetrate and deliver microfluidic
payloads into mouse brains. In addition, 3D-printed multi-side-port microneedles showed reduced penetration
and retrieval-associated damage to zebrafish embryos during microinjection protocols. This proposal will
examine the efficacy of this innovation to enhance fundamental performance metrics underlying both gene and
cell delivery into brain tissue. To effectively accomplish this goal, we will: 1) establish and characterize MNA
additive manufacturing protocols for novel 3D microneedle designs, 2) assess microfluidic and cell delivery
efficacy of our innovative delivery strategy versus ISNs in vitro, and 3) evaluate gene and stem cell delivery into
mouse brains mediated by our MNA innovation versus ISNs in vivo. This proposal to prototype MNA MVPs that
improve penetration, injection, and retrieval efficacy versus ISNs bridges an important need in the biomedical
industry, which will positively impact foundational human health-related research and medical applications.
项目摘要
显微注射技术是许多需要基因和细胞递送的研究和临床应用的基础,
包括神经病症的研究和新兴治疗(例如,神经变性疾病,
创伤性脑损伤和癌症)。不幸的是,与微注射工具相关的挑战,
在这些应用中固有的病毒载体和细胞被递送到脑组织中仍然是
这些快速增长的领域。尽管被广泛使用,但目前使用的工业标准针(ISN)包括
一个针头在尖端有一个输出端口,并与各种经验证的客户痛点相关。
具体而言,(1)治疗剂如慢病毒颗粒(80 - 100 nm)和干细胞(> 10
μ m)限制ISN介导的递送进入单个注射部位,固有地限制了有效覆盖范围;
(2)ISN的单一注射部位也可导致递送的治疗剂的不均匀分布,
这可能对功效有害;和(3)ISN的形状和大小可能导致脑组织损伤。
因此,替代的,新的显微注射工具的基因和细胞的交付是在关键的需求。
该提案的目的是开发一种全新的微针阵列(MNAs),
实现了同时解决上述所有三个ISN的痛点。工作假设是,
最小可行产品(MVP)将通过实现无与伦比的多功能性来改变微注射结果,
几何复杂的MNAs创新,提高了向大脑提供治疗的功效,
减少与显微注射相关的组织损伤。初步研究表明,
微印刷使能的微针阵列(MNAs)递送策略以穿透和递送微流体
有效载荷进入小鼠大脑。此外,3D打印的多侧孔微针显示出降低的穿透力。
以及在显微注射过程中对斑马鱼胚胎的取回相关损伤。这项建议会
检查这种创新的功效,以增强基因和
将细胞输送到脑组织中。为了有效地实现这一目标,我们将:1)建立和表征MNA
用于新型3D微针设计的增材制造方案,2)评估微流体和细胞递送
我们创新的递送策略在体外相对于ISN的功效,和3)评估基因和干细胞递送到
通过我们的MNA创新与ISN在体内介导的小鼠大脑。这一关于多边核方案最有价值方案原型的建议,
与ISN相比,提高穿透、注射和回收效率是生物医学领域的一个重要需求,
这将对人类健康相关的基础研究和医疗应用产生积极影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kinneret Rand其他文献
Kinneret Rand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 40.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 40.38万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 40.38万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 40.38万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 40.38万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 40.38万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 40.38万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 40.38万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 40.38万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 40.38万 - 项目类别:
Standard Grant














{{item.name}}会员




