3D microprinting-enabled microinjection needle arrays for enhanced therapeutics delivery into the brain

支持 3D 微打印的显微注射针阵列可增强向大脑的治疗输送

基本信息

  • 批准号:
    10761073
  • 负责人:
  • 金额:
    $ 40.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-10 至 2024-09-09
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Microinjection technologies underlie many research and clinical applications that require gene and cell delivery, including studies and emerging treatments of neurological conditions (e.g., neurodegenerative diseases, traumatic brain injury, and cancer). Unfortunately, challenges associated with the microinjection tools by which the viral vectors and cells inherent in these applications are delivered into brain tissues remain major barriers in these rapidly growing fields. Although widely used, the currently used industry standard needles (ISNs) comprise one needle with a single output port at the tip and are associated with a variety of validated customer pain points. In particular, (1) the physical size of therapeutics such as lentiviral particles (80–100 nm) and stem cells (>10 μm) restricts ISN-mediated delivery into a single injection site inherently restricts the effective coverage range; (2) the single injection site for ISNs can also result in inhomogeneous distributions of delivered therapeutics, which can be detrimental to efficacy; and (3) the shape and size of ISNs can lead to brain tissue injury. Consequently, alternative, novel microinjection tools for both gene and cell delivery are in critical demand. The objective of this proposal is to develop an entirely new class of microneedle arrays (MNAs) that can be realized to simultaneously address all three aforementioned pain points of ISNs. The working hypothesis is that the minimal viable product (MVP) will transform microinjection outcomes via unparalleled versatility in realizing geometrically sophisticated MNAs innovations, improve the efficacy of delivering therapeutics to the brain and reducing microinjection-associated tissue damage. Preliminary studies demonstrated the ability of 3D microprinting-enabled microneedle arrays (MNAs) delivery strategy to penetrate and deliver microfluidic payloads into mouse brains. In addition, 3D-printed multi-side-port microneedles showed reduced penetration and retrieval-associated damage to zebrafish embryos during microinjection protocols. This proposal will examine the efficacy of this innovation to enhance fundamental performance metrics underlying both gene and cell delivery into brain tissue. To effectively accomplish this goal, we will: 1) establish and characterize MNA additive manufacturing protocols for novel 3D microneedle designs, 2) assess microfluidic and cell delivery efficacy of our innovative delivery strategy versus ISNs in vitro, and 3) evaluate gene and stem cell delivery into mouse brains mediated by our MNA innovation versus ISNs in vivo. This proposal to prototype MNA MVPs that improve penetration, injection, and retrieval efficacy versus ISNs bridges an important need in the biomedical industry, which will positively impact foundational human health-related research and medical applications.
项目概要 显微注射技术是许多需要基因和细胞输送的研究和临床应用的基础, 包括神经系统疾病的研究和新兴治疗方法(例如神经退行性疾病、 脑外伤和癌症)。不幸的是,与显微注射工具相关的挑战 这些应用中固有的病毒载体和细胞被输送到脑组织中仍然是主要障碍 这些快速增长的领域。尽管广泛使用,但目前使用的行业标准针 (ISN) 包括 一根针头在尖端有一个输出端口,并与各种经过验证的客户痛点相关联。 特别是,(1) 慢病毒颗粒 (80–100 nm) 和干细胞 (>10 μm) 限制了 ISN 介导的递送到单个注射部位,本质上限制了有效覆盖范围; (2) ISN 的单一注射部位也会导致所递送治疗药物的分布不均匀, 这可能会损害功效; (3) ISN的形状和大小可导致脑组织损伤。 因此,迫切需要用于基因和细胞递送的替代性新型显微注射工具。 该提案的目标是开发一类全新的微针阵列 (MNA), 实现同时解决 ISN 的所有上述三个痛点。工作假设是 最小可行产品(MVP)将通过无与伦比的多功能性来改变显微注射结果 几何复杂的 MNA 创新,提高了向大脑提供治疗的功效, 减少显微注射相关的组织损伤。初步研究证明了 3D 的能力 支持微打印的微针阵列 (MNA) 传递策略,用于渗透和传递微流体 有效载荷进入小鼠大脑。此外,3D打印的多侧端口微针的穿透力降低 以及显微注射过程中与斑马鱼胚胎检索相关的损伤。该提案将 检查这项创新的功效,以增强基因和基因的基本性能指标 细胞输送到脑组织。为了有效地实现这一目标,我们将:1)建立并描述 MNA 用于新型 3D 微针设计的增材制造方案,2) 评估微流体和细胞输送 我们的创新递送策略相对于体外 ISN 的功效,以及 3) 评估基因和干细胞递送到 我们的 MNA 创新介导的小鼠大脑与体内 ISN 的介导。这项 MNA MVP 原型提案 与 ISN 相比,提高渗透、注射和回收功效,满足了生物医学领域的重要需求 行业,这将对人类健康相关的基础研究和医疗应用产生积极影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kinneret Rand其他文献

Kinneret Rand的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
  • 批准号:
    22K13777
  • 财政年份:
    2022
  • 资助金额:
    $ 40.38万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
  • 批准号:
    10045111
  • 财政年份:
    2022
  • 资助金额:
    $ 40.38万
  • 项目类别:
    Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
  • 批准号:
    2749141
  • 财政年份:
    2022
  • 资助金额:
    $ 40.38万
  • 项目类别:
    Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 40.38万
  • 项目类别:
    College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 40.38万
  • 项目类别:
    College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
  • 批准号:
    10801667
  • 财政年份:
    2019
  • 资助金额:
    $ 40.38万
  • 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1738138
  • 财政年份:
    2017
  • 资助金额:
    $ 40.38万
  • 项目类别:
    Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
  • 批准号:
    17K18852
  • 财政年份:
    2017
  • 资助金额:
    $ 40.38万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
  • 批准号:
    1612567
  • 财政年份:
    2016
  • 资助金额:
    $ 40.38万
  • 项目类别:
    Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1621732
  • 财政年份:
    2016
  • 资助金额:
    $ 40.38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了