Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
基本信息
- 批准号:10759721
- 负责人:
- 金额:$ 15.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-08 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectAnatomyAngiographyArteriesAttentionBiological MarkersBlood - brain barrier anatomyBlood VesselsBlood capillariesBrainCase StudyCause of DeathCerebral small vessel diseaseCerebrovascular DisordersCerebrumClassificationClinicalClinical DataCognitionCohort StudiesCollaborationsConsumptionContrast MediaDataData AnalyticsData EngineeringData SetDatabasesDiagnosisDiameterDisease MarkerDistalEffectivenessFunctional disorderGoalsHIVHIV InfectionsHigh PrevalenceImageIndividualInterventionLabelLeadMRI ScansMachine LearningMagnetic Resonance AngiographyMagnetic Resonance ImagingManualsMeasuresMethodsMonitorMorphologyNeurocognitiveParticipantPathogenesisPatient-Focused OutcomesPenetrationPersonsPlayProtocols documentationQuality of lifeReadingResolutionRiskRoleSpeedSubcortical InfarctionsTechniquesTimeTrainingTranslationsVascular Cognitive ImpairmentVascular DementiaVascular DiseasesVisualWhite Matter Hyperintensityantiretroviral therapyarterioleautomated segmentationbiomarker performancebrain basedcerebral atrophycerebral microbleedscerebrovascularclinical diagnosisclinical examinationcognitive functioncognitive performancecohortdeep learningdisabilityexecutive functionfeature extractionimaging biomarkerimprovedin vivomachine learning frameworkneuroimagingneuroimaging markerneurovascular unitnovel strategiesprocessing speedprospectivereconstructionultra high resolutionvascular abnormalityvascular risk factorvenule
项目摘要
Cerebrovascular disease is a major cause of death and disability globally. Time-of-flight magnetic resonance
angiography (TOF-MRA) is a common noninvasive technique to evaluate vascular abnormalities. Accurate
segmentation and feature extraction of cerebral vessels from TOF-MRA data is crucial for diagnosis and
treatment of cerebrovascular diseases. However, manual annotation of vessels is a time-consuming task even
for experts, and an automatic segmentation method can speed-up the task significantly. Although several
machine learning-based post-processing approaches exist, these are limited to vessel segmentation only and
require large manually segmented training datasets. Further, image resolution plays an important role to segment
the vessels as well as extracting features (e.g., diameters, number of branches, tortuosity) accurately.
Aim 1: To develop an automated anatomical prior based machine learning framework for brain artery
segmentation with minimal training MR high resolution data followed by feature extractions on low resolution
MRA from an existing database.
Aim 2: To assess the relationship between targeted vessel features and neuroimaging biomarkers of cerebral
small vessel disease (CSVD).
Aim 3: To assess the relationship between targeted vessel features and cognitive performance in HIV CSVD
cohort.
To achieve this goal, we will implement our recently proposed automated vessel segmentation and feature
extraction pipeline “BayesTract” in combination with a super-resolution approach. We will validate it using in-vivo
MRI scans. We will then examine the vascular features and their associations with CSVD markers and cognitive
performance in an existing dataset (101 HIV+ and 102 HIV- controls with CSVD). We hypothesize that this
approach will provide more accurate and time-efficient measures compared to existing approaches. We also
hypothesize that vascular features and their associations with CSVD markers and cognition will be significantly
different between those with and without CSVD.
This study helps advance the state-of-the-art in brain vessel segmentation and feature extractions from non-
invasive TOF-MRA, which could hasten the translation of vessel related biomarkers into the clinical setting. This
will be essential in evaluating promising interventions and ultimately, lead to ameliorating patient outcome and
quality of life.
脑血管疾病是全球死亡和残疾的主要原因。飞行时间磁共振
血管造影术(TOF-MRA)是评价血管异常的常用非侵入性技术。准确
从TOF-MRA数据中分割和提取脑血管特征对于诊断和
治疗脑血管疾病。然而,血管的手动注释是一项耗时的任务,
而自动分割方法可以显著加快任务的执行速度。尽管几
存在基于机器学习的后处理方法,这些方法仅限于血管分割,
需要大量手动分割的训练数据集。此外,图像分辨率对分割起着重要作用
血管以及提取特征(例如,直径、分支数量、迂曲度)。
目标1:开发一个基于脑动脉解剖先验的自动化机器学习框架
用最少的训练MR高分辨率数据进行分割,然后在低分辨率上进行特征提取
来自现有数据库的MRA。
目的2:探讨脑梗死靶血管特征与脑梗死神经影像学标志物的关系。
小血管疾病(CSVD)。
目的3:评估HIV CSVD中靶血管特征与认知表现之间的关系
队列。
为了实现这一目标,我们将实现我们最近提出的自动血管分割和特征
提取管道“贝叶斯跟踪”与超分辨率方法相结合。我们将使用体内
核磁共振扫描。然后,我们将研究血管特征及其与CSVD标志物和认知功能的关系。
现有数据集(101例HIV+和102例HIV-对照CSVD)的性能。我们假设这
与现有方法相比,新方法将提供更准确和更省时的措施。我们也
假设血管特征及其与CSVD标记物和认知的关联将显著
有CSVD和没有CSVD的人之间的差异。
这项研究有助于推进脑血管分割和非脑血管特征提取的最新技术。
侵入性TOF-MRA,可以加速血管相关生物标志物转化为临床环境。这
在评估有希望的干预措施中至关重要,并最终改善患者的结局,
生活质量
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Md Nasir Uddin其他文献
Md Nasir Uddin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 15.4万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 15.4万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 15.4万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 15.4万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 15.4万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 15.4万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 15.4万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 15.4万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 15.4万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 15.4万 - 项目类别:
Research Grant