Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
基本信息
- 批准号:10759721
- 负责人:
- 金额:$ 15.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-08 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectAnatomyAngiographyArteriesAttentionBiological MarkersBlood - brain barrier anatomyBlood VesselsBlood capillariesBrainCase StudyCause of DeathCerebral small vessel diseaseCerebrovascular DisordersCerebrumClassificationClinicalClinical DataCognitionCohort StudiesCollaborationsConsumptionContrast MediaDataData AnalyticsData EngineeringData SetDatabasesDiagnosisDiameterDisease MarkerDistalEffectivenessFunctional disorderGoalsHIVHIV InfectionsHigh PrevalenceImageIndividualInterventionLabelLeadMRI ScansMachine LearningMagnetic Resonance AngiographyMagnetic Resonance ImagingManualsMeasuresMethodsMonitorMorphologyNeurocognitiveParticipantPathogenesisPatient-Focused OutcomesPenetrationPersonsPlayProtocols documentationQuality of lifeReadingResolutionRiskRoleSpeedSubcortical InfarctionsTechniquesTimeTrainingTranslationsVascular Cognitive ImpairmentVascular DementiaVascular DiseasesVisualWhite Matter Hyperintensityantiretroviral therapyarterioleautomated segmentationbiomarker performancebrain basedcerebral atrophycerebral microbleedscerebrovascularclinical diagnosisclinical examinationcognitive functioncognitive performancecohortdeep learningdisabilityexecutive functionfeature extractionimaging biomarkerimprovedin vivomachine learning frameworkneuroimagingneuroimaging markerneurovascular unitnovel strategiesprocessing speedprospectivereconstructionultra high resolutionvascular abnormalityvascular risk factorvenule
项目摘要
Cerebrovascular disease is a major cause of death and disability globally. Time-of-flight magnetic resonance
angiography (TOF-MRA) is a common noninvasive technique to evaluate vascular abnormalities. Accurate
segmentation and feature extraction of cerebral vessels from TOF-MRA data is crucial for diagnosis and
treatment of cerebrovascular diseases. However, manual annotation of vessels is a time-consuming task even
for experts, and an automatic segmentation method can speed-up the task significantly. Although several
machine learning-based post-processing approaches exist, these are limited to vessel segmentation only and
require large manually segmented training datasets. Further, image resolution plays an important role to segment
the vessels as well as extracting features (e.g., diameters, number of branches, tortuosity) accurately.
Aim 1: To develop an automated anatomical prior based machine learning framework for brain artery
segmentation with minimal training MR high resolution data followed by feature extractions on low resolution
MRA from an existing database.
Aim 2: To assess the relationship between targeted vessel features and neuroimaging biomarkers of cerebral
small vessel disease (CSVD).
Aim 3: To assess the relationship between targeted vessel features and cognitive performance in HIV CSVD
cohort.
To achieve this goal, we will implement our recently proposed automated vessel segmentation and feature
extraction pipeline “BayesTract” in combination with a super-resolution approach. We will validate it using in-vivo
MRI scans. We will then examine the vascular features and their associations with CSVD markers and cognitive
performance in an existing dataset (101 HIV+ and 102 HIV- controls with CSVD). We hypothesize that this
approach will provide more accurate and time-efficient measures compared to existing approaches. We also
hypothesize that vascular features and their associations with CSVD markers and cognition will be significantly
different between those with and without CSVD.
This study helps advance the state-of-the-art in brain vessel segmentation and feature extractions from non-
invasive TOF-MRA, which could hasten the translation of vessel related biomarkers into the clinical setting. This
will be essential in evaluating promising interventions and ultimately, lead to ameliorating patient outcome and
quality of life.
脑血管疾病是全球死亡和残疾的主要原因。飞行时间磁共振
血管造影(TOF-MRA)是评估血管异常的常见无创技术。准确的
从TOF-MRA数据中的细分和特征提取大脑视频对于诊断和
脑血管疾病的治疗。但是,船只的手动注释甚至是一项耗时的任务
对于专家而言,自动分割方法可以显着加速任务。虽然有几个
存在基于机器学习的后处理方法,这些方法仅限于船只分割,
需要大量的手动分割培训数据集。此外,图像分辨率在细分方面起着重要作用
血管以及提取特征(例如,直径,分支数量,曲折的数量)。
目标1:开发一个自动解剖学先验的机器学习框架
通过最小训练的分割MR高分辨率数据,然后是低分辨率提取的特征提取
来自现有数据库的MRA。
目标2:评估靶向血管特征与脑神经影像学之间的关系
小血管疾病(CSVD)。
目标3:评估靶向血管特征与HIV CSVD中的认知表现之间的关系
队列。
为了实现这一目标,我们将实施我们最近提出的自动化船只细分和功能
提取管道“ Bayestract”与超分辨率方法结合使用。我们将使用体内验证它
MRI扫描。然后,我们将检查血管特征及其与CSVD标记和认知的关联
现有数据集(使用CSVD的101 HIV+和102 HIV控制)中的性能。我们假设这是
与现有方法相比,方法将提供更准确和及时的措施。我们也是
假设血管特征及其与CSVD标记和认知的关联将显着
有和没有CSVD的人不同。
这项研究有助于提高脑血管分割的最新技术,并从非 -
侵入性TOF-MRA,这可能是将相关生物标志物转化为临床环境的转化。这
评估承诺的干预措施至关重要,最终导致患者的结果和
生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Md Nasir Uddin其他文献
Md Nasir Uddin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 15.4万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 15.4万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 15.4万 - 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
- 批准号:
10645919 - 财政年份:2023
- 资助金额:
$ 15.4万 - 项目类别: