A machine learning based fetal monitoring system to predict and prevent fetal hypoxia.

基于机器学习的胎儿监测系统,用于预测和预防胎儿缺氧。

基本信息

  • 批准号:
    10760437
  • 负责人:
  • 金额:
    $ 26.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-05 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract: Although EFM is widely deployed in the United States for most deliveries, it has failed to reduce rates for hypoxic injuries such as neonatal encephalopathy, despite an increased rate of cesarean sections. This lack of improvement has been attributed to inconsistent applications of vague guidelines during manual analysis of EFM tracings. Existing automated tools available in the market to augment physician capabilities take the form of low-precision simplistic rule-based alerts, which cause alarm fatigue and also fail to deliver improvements. This project proposes the creation and validation of a machine learning model for prediction of intrapartum fetal hypoxia with high sensitivity and specificity to address this need. Using a multi-site dataset of 50,000 tracings coupled with electronic health records, a combination of clinical knowledge and a variety of machine learning techniques will be used to create a model with leading performance. To clear the high bar set by FDA for patient safety with a de novo device, this proposal aims to validate this model by demonstrating high sensitivity and specificity on a held-out portion of this large multi-site data set, along with a user study to demonstrate improved performance by clinicians with software assistance. After this project demonstrates the safety and efficacy of this model for patient care, a future Phase II will beta test a software solution integrating this model in labor and delivery wards. The research plan outlined in this proposal will give obstetricians a valuable evidence-based tool to help them interpret EFM tracings.
项目概要/摘要: 尽管EFM在美国的大多数交付中都得到了广泛部署,但它未能降低 缺氧性损伤,如新生儿脑病,尽管剖宫产率增加。这种缺乏 改进归因于在人工分析期间不一致地应用模糊的指导方针, EFM跟踪。市场上现有的增强医生能力的自动化工具采取以下形式 基于规则的低精度简单化警报,导致警报疲劳,也无法提供改进。 该项目提出了一个机器学习模型的创建和验证,用于预测产时胎儿 低氧具有高灵敏度和特异性,以满足这一需求。使用包含50,000个描记的多站点数据集 再加上电子健康记录,结合临床知识和各种机器学习, 技术将用于创建具有领先性能的模型。为了清除FDA为 患者安全性与从头器械,该提案旨在通过证明高灵敏度来验证该模型 和特异性,这一大型多站点数据集的保留部分,沿着用户研究,以证明 通过软件辅助提高临床医生的性能。在这个项目证明了安全性和 为了验证该模型对患者护理的有效性,未来的第二阶段将测试集成该模型的软件解决方案 在分娩和分娩病房。该研究计划概述了这一建议将给产科医生一个宝贵的 以证据为基础的工具,以帮助他们解释EFM跟踪。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bonnie Lesley Zell其他文献

Bonnie Lesley Zell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10707830
  • 财政年份:
    2023
  • 资助金额:
    $ 26.13万
  • 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
  • 批准号:
    479728
  • 财政年份:
    2023
  • 资助金额:
    $ 26.13万
  • 项目类别:
    Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
  • 批准号:
    10884567
  • 财政年份:
    2023
  • 资助金额:
    $ 26.13万
  • 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
  • 批准号:
    10751964
  • 财政年份:
    2023
  • 资助金额:
    $ 26.13万
  • 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
  • 批准号:
    486321
  • 财政年份:
    2022
  • 资助金额:
    $ 26.13万
  • 项目类别:
    Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10676786
  • 财政年份:
    2022
  • 资助金额:
    $ 26.13万
  • 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10440970
  • 财政年份:
    2022
  • 资助金额:
    $ 26.13万
  • 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
  • 批准号:
    10642998
  • 财政年份:
    2022
  • 资助金额:
    $ 26.13万
  • 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10482465
  • 财政年份:
    2022
  • 资助金额:
    $ 26.13万
  • 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
  • 批准号:
    10191053
  • 财政年份:
    2020
  • 资助金额:
    $ 26.13万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了