Development of an innovative approach for in situ treatment of PCB impacted sediments by microbial bioremediation

开发一种通过微生物生物修复原位处理受 PCB 影响的沉积物的创新方法

基本信息

  • 批准号:
    10760823
  • 负责人:
  • 金额:
    $ 64.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Polychlorinated biphenyls (PCBs) are one of the most problematic of legacy pollutants. Persistent and mobile in the environment, PCBs are largely ubiquitous in depositional sediments of aquatic systems in industrial regions of the United States. Their relatively high toxicity and bioaccumulation potential cause elevated risk to both human and ecological receptors. As such, PCBs are often the primary risk driver at Superfund sediment sites. Common practices for remediating PCB-impacted sediments are costly, often involving the physical removal of contaminated sediments and disposal of the sediments in a confined landfill, and/or installation of a multi-layered engineered cap over the contaminated sediments. An emerging strategy for effectively removing PCBs from sediments in situ is the use of bio-amended activated carbon (AC), which employs AC pellets inoculated with enriched cultures of PCB-degrading microbes. The co- investigators of this proposed research have performed the fundamental research behind the use of bio- amended AC for remediation of PCBs in sediment and have patented commercially-viable methods for growing, inoculating, and delivering the bioamended AC pellets to sediments. The prior Phase I project, a collaboration between university scientists and RemBac Environmental, addressed two factors that limit the ready use of this technology for large, multi-acre sites: 1) the large-scale growth, storage, and transport of anaerobic PCB degrading bacteria, and; 2) large-scale methods for inoculating and deploying the bioamended AC pellets. The PCB halorespiring anaerobe was successfully scaled up to the maximum density in a bench-scale bioreactor, methods were developed for storage of cells by lyophilization and two approaches were successfully tested for the continuous, uniform inoculation of high volumes of AC pellets with the PCB-degrading microorganisms. The proposed research will advance the technology towards commercialization by demonstrating the efficacy of the methods developed in Phase I for scaled up production at a commercial facility, and perform a pilot-scale demonstration of the technology at the New Bedford Harbor Superfund Site (NBHSS). PCB degrading microorganisms will be scaled up to cell numbers sufficient to treat over 1 acre, and AC pellets will be inoculated on-site using methods developed in Phase I to assess the efficacy of the application methods in a tidal marsh. PCB levels in sediment and water will be assayed after one year to 1) assess the effectiveness and environmental impact of the treatment, and 2) assess the stability of the treatment with tidal activity. Finally, a cost analysis conducted for the entire process to assess the commercial viability of bio-amended AC as a cost- effective treatment for PCB impacted sites. The proposed research is anticipated to result in a direct transfer of this technology from pilot-scale to full commercial viability through an active collaboration with the U.S. Environmental Protection Agency (USEPA), U.S. Army Corps of Engineers (USACE), engineering consultants, and Superfund site stakeholders.
项目概要 多氯联苯 (PCB) 是最成问题的遗留污染物之一。持久且可移动 在环境方面,多氯联苯在工业区水生系统的沉积沉积物中普遍存在 美国的。它们相对较高的毒性和生物蓄积潜力会导致两者的风险增加 人类和生态受体。因此,多氯联苯通常是超级基金沉积物场地的主要风险驱动因素。 修复受 PCB 影响的沉积物的常见做法成本高昂,通常涉及物理去除 受污染的沉积物以及在密闭垃圾填埋场中处置沉积物,和/或安装多层 在受污染的沉积物上盖上工程盖。 有效去除沉积物中多氯联苯的一种新兴策略是使用生物改良的活性物质 碳 (AC),采用接种了 PCB 降解微生物富集培养物的 AC 颗粒。该共同 这项拟议研究的研究人员已经进行了使用生物技术背后的基础研究 修正了用于修复沉积物中 PCB 的 AC,并拥有商业上可行的种植方法专利, 接种并将生物改良的活性炭颗粒输送到沉积物中。之前的一期项目,是一个合作项目 大学科学家和 RemBac Environmental 之间的合作解决了限制该技术立即使用的两个因素 适用于大型、多英亩场地的技术:1)厌氧 PCB 的大规模生长、储存和运输 降解细菌; 2)大规模接种和部署生物改良AC颗粒的方法。这 PCB 嗜盐厌氧菌已在小型生物反应器中成功放大至最大密度, 开发了通过冻干保存细胞的方法,并成功测试了两种方法 用 PCB 降解微生物连续、均匀地接种大量 AC 颗粒。 拟议的研究将通过证明其功效来推动该技术走向商业化 第一阶段开发的方法,用于在商业设施中扩大生产,并进行中试规模 在新贝德福德港超级基金站点 (NBHSS) 展示该技术。 PCB降解 微生物将扩大到足以处理超过 1 英亩的细胞数量,并且将接种 AC 颗粒 现场使用第一阶段开发的方法来评估潮汐沼泽中应用方法的有效性。 沉积物和水中的 PCB 含量将在一年后进行测定,以 1) 评估有效性和 处理的环境影响,以及 2) 评估处理对潮汐活动的稳定性。最后,一个 对整个过程进行成本分析,以评估生物改良活性炭作为成本的商业可行性 对 PCB 受影响部位进行有效处理。拟议的研究预计将导致直接转移 通过与美国的积极合作,该技术从试点规模到完全商业可行性 环境保护局 (USEPA)、美国陆军工程兵团 (USACE)、工程顾问、 和超级基金网站利益相关者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Craig Bennett Amos其他文献

Craig Bennett Amos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Craig Bennett Amos', 18)}}的其他基金

Development of an innovative approach for in situ treatment of PCB impacted sediments by microbial bioremediation
开发一种通过微生物生物修复原位处理受 PCB 影响的沉积物的创新方法
  • 批准号:
    10077158
  • 财政年份:
    2020
  • 资助金额:
    $ 64.49万
  • 项目类别:

相似海外基金

Targeting aerobic glycolysis via hexokinase 2 inhibition in Natural Killer T cell lymphomas
通过抑制己糖激酶 2 靶向自然杀伤 T 细胞淋巴瘤中的有氧糖酵解
  • 批准号:
    23K07830
  • 财政年份:
    2023
  • 资助金额:
    $ 64.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing Late Metal Catalytic Systems for Aerobic Partial Oxidation of Alkanes
开发烷烃有氧部分氧化的后金属催化系统
  • 批准号:
    2247667
  • 财政年份:
    2023
  • 资助金额:
    $ 64.49万
  • 项目类别:
    Standard Grant
Concurrent Aerobic Exercise and Cognitive Training to Prevent Alzheimer's in at-risk Older Adults
同时进行有氧运动和认知训练可预防高危老年人的阿尔茨海默病
  • 批准号:
    10696409
  • 财政年份:
    2023
  • 资助金额:
    $ 64.49万
  • 项目类别:
Precision Medicine in Alzheimer’s Disease: A SMART Trial of Adaptive Exercises and Their Mechanisms of Action Using AT(N) Biomarkers to Optimize Aerobic-Fitness Responses
阿尔茨海默病的精准医学:使用 AT(N) 生物标志物优化有氧健身反应的适应性运动及其作用机制的 SMART 试验
  • 批准号:
    10581973
  • 财政年份:
    2023
  • 资助金额:
    $ 64.49万
  • 项目类别:
MIND Foods and Aerobic Training in Black Adults with HTN: An ADRD Prevention Pilot RCT (MAT)
MIND 食品和患有 HTN 的黑人成人的有氧训练:ADRD 预防试点随机对照试验 (MAT)
  • 批准号:
    10585366
  • 财政年份:
    2023
  • 资助金额:
    $ 64.49万
  • 项目类别:
Investigating the physical and chemical controls on aerobic methane oxidation
研究好氧甲烷氧化的物理和化学控制
  • 批准号:
    2241873
  • 财政年份:
    2023
  • 资助金额:
    $ 64.49万
  • 项目类别:
    Standard Grant
Pro-Resolving Inflammatory Mediators in Neurovascular Gains in Aerobic Training; a phase 2, double-blind, randomized placebo-controlled trial (PRIMiNG-AT2)
有氧训练中促进神经血管增益的炎症介质的消除;
  • 批准号:
    485524
  • 财政年份:
    2023
  • 资助金额:
    $ 64.49万
  • 项目类别:
    Operating Grants
Effect of aerobic exercise-induced sleep changes on arterial stiffness associated with postprandial hyperglycemia.
有氧运动引起的睡眠变化对与餐后高血糖相关的动脉僵硬度的影响。
  • 批准号:
    23K10645
  • 财政年份:
    2023
  • 资助金额:
    $ 64.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Regulators of Photoreceptor Aerobic Glycolysis in Retinal Health and Disease
视网膜健康和疾病中光感受器有氧糖酵解的调节因子
  • 批准号:
    10717825
  • 财政年份:
    2023
  • 资助金额:
    $ 64.49万
  • 项目类别:
The Effects of Aerobic Exercise on Cardiovascular Health in Postmenopausal Females: A Systematic Review and Meta-Analysis
有氧运动对绝经后女性心血管健康的影响:系统评价和荟萃分析
  • 批准号:
    480729
  • 财政年份:
    2023
  • 资助金额:
    $ 64.49万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了