Measuring the Longitudinal Relationshipsbetween Obesity, Weight Management Intervention, and Medical Expenditure

测量肥胖、体重管理干预和医疗支出之间的纵向关系

基本信息

  • 批准号:
    10759361
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

The prevalence of obesity among adults is stabilizing after decades of unrelenting increases and about 68% of Veterans are considered either overweight or obese. Obesity is the second leading cause of preventable deaths in the US and is associated with a wide range of diseases, such as hypertension, type 2 diabetes mellitus, coronary heart disease, and osteoarthritis. These clinical risks lead obese patients to incur disproportionately high health expenditures. In 2008, annual health expenditures attributable to obesity were estimated to be $147 billion, concentrated among morbidly obese patients. In 2013, 28.2% of overall health expenditures for adults was incurred for obesity-associated care. Currently, three types of weight management interventions are available to overweight and obese VA patients: behavioral lifestyle counseling, pharmacotherapy and bariatric surgery. The most widely used of these interventions is behavioral counseling through the MOVE! program. Despite the widespread adoption of MOVE! as a first line treatment for obesity in VA, MOVE! participation has been associated with modest short- term weight loss and evidence is absent regarding the clinical and economic effectiveness of MOVE! beyond a 12-month follow-up. No prior VA studies have examined the natural history of weight gain, long-term expenditures of normal weight, overweight and obese Veterans, or changes in weight and expenditures attributable to MOVE!. It is important to understand longitudinal (20-year) patterns of VA healthcare expenditures by BMI progression to characterize the long-run scope of the problem of obesity in VA. Such results will then provide significant context for evaluating the health and economic effectiveness of MOVE! participation. Taken together, the four specific aims will enable an examination of impact of MOVE! on Veteran outcomes in the context of VA's overall population-level weight management strategy on eligible Veterans: Aim 1: Identify latent classes of different BMI progression trajectories between 2000-2019. Aim 2: Estimate differences in long term VA expenditures between latent BMI classes. Aim 3: Identify the average treatment effect of MOVE! and characteristics of Veterans who experience the greatest weight reductions following MOVE! participation. Aim 4: Identify the average treatment effect of MOVE! on expenditures and characteristics of Veterans who experience the greatest reduction in VA expenditures following MOVE! participation. Next Steps: The examination of 20-year expenditures associated with obesity and differential effects of MOVE! responds to one of the top four strategic goals identified in the VA FY 2018-2024 Strategic Plan by informing approaches to focus resources more efficiently. This study also addresses HSR&D's cross-cutting priority of business case and policy analysis and the Healthcare Informatics priority through the analysis, validation, and application of Big Data sources to improve individual and population health. This research will also enable us to formalize an algorithm to identify patients most likely to benefit from MOVE!, as well as those unlikely to achieve significant clinical weight loss through MOVE!. Following identification of Veterans at greatest risk for obesity and high VA expenditures, and of Veterans who experience the greatest weight and expenditure improvements following weight loss intervention, we will partner with NCP to determine how best to implement a prioritization strategy to develop need-tailored behavioral programs.
经过几十年的持续增加,成人肥胖患病率正在趋于稳定,大约 68% 的退伍军人被认为超重或肥胖。肥胖是第二大原因 在美国,死亡是可预防的,并且与多种疾病有关,例如高血压、2 型 糖尿病、冠心病和骨关节炎。这些临床风险导致肥胖患者发生 医疗保健支出过高。 2008 年,因肥胖导致的年度医疗支出为 估计为 1,470 亿美元,主要集中在病态肥胖患者身上。 2013年,总体健康状况占28.2% 成人的支出用于与肥胖相关的护理。 目前,超重和肥胖 VA 可采用三种类型的体重管理干预措施 患者:行为生活方式咨询、药物治疗和减肥手术。其中使用最广泛的是 这些干预措施是通过 MOVE 进行行为咨询!程序。尽管广泛采用 移动!作为 VA 肥胖症的一线治疗方法,MOVE!参与与适度的短期 关于 MOVE! 的临床和经济效果,目前还没有减肥术语和证据!超越一个 12个月的随访。之前没有任何 VA 研究考察过体重增加的自然史、长期情况 正常体重、超重和肥胖退伍军人的支出,或体重和支出的变化 归因于 MOVE!。了解 VA 医疗保健的纵向(20 年)模式非常重要 通过 BMI 进展来表征 VA 肥胖问题的长期范围的支出。这样的 结果将为评估 MOVE! 的健康和经济效果提供重要背景! 参与。总而言之,这四个具体目标将能够检验 MOVE! 的影响!关于老兵 退伍军人事务部对符合条件的退伍军人的总体人口体重管理策略的结果: 目标 1:确定 2000 年至 2019 年间不同 BMI 进展轨迹的潜在类别。 目标 2:估计潜在 BMI 类别之间长期 VA 支出的差异。 目标 3:确定 MOVE! 的平均治疗效果!以及经历过的退伍军人的特征 MOVE 后体重减轻幅度最大!参与。 目标 4:确定 MOVE! 的平均治疗效果!关于退伍军人的支出和特征 MOVE 后,VA 支出将大幅减少!参与。 后续步骤:检查 20 年与肥胖相关的支出以及肥胖的不同影响 移动!响应 VA 2018-2024 财年战略计划中确定的四大战略目标之一 提供更有效地集中资源的方法。本研究还探讨了 HSR&D 的跨领域问题 业务案例和政策分析的优先级以及通过分析的医疗信息学优先级, 验证和应用大数据源以改善个人和人口健康。这项研究将 还使我们能够形式化算法来识别最有可能从 MOVE! 中受益的患者,以及那些 通过 MOVE! 不太可能实现显着的临床减肥效果。在对退伍军人进行身份识别后 肥胖和高 VA 支出的最大风险,以及体重和 VA 支出最高的退伍军人的最大风险 减肥干预后的支出改善,我们将与 NCP 合作确定如何最好 实施优先策略来制定根据需要定制的行为计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MATTHEW L MACIEJEWSKI其他文献

MATTHEW L MACIEJEWSKI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MATTHEW L MACIEJEWSKI', 18)}}的其他基金

Social and Behavioral Determinants of Health in High-Risk Veterans
高风险退伍军人健康的社会和行为决定因素
  • 批准号:
    10493192
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Social and Behavioral Determinants of Health in High-Risk Veterans
高风险退伍军人健康的社会和行为决定因素
  • 批准号:
    10313362
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
HSR&D Senior Research Career Scientist Award
高铁
  • 批准号:
    10197060
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
HSR&D Senior Research Career Scientist Award
高铁
  • 批准号:
    10392930
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
HSR&D Senior Research Career Scientist Award
高铁
  • 批准号:
    10004974
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Measuring the Longitudinal Relationshipsbetween Obesity, Weight Management Intervention, and Medical Expenditure
测量肥胖、体重管理干预和医疗支出之间的纵向关系
  • 批准号:
    10209965
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Risk Stratification and Tailoring of Prevention Programs
风险分层和预防计划的定制
  • 批准号:
    9768329
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Long-term Mental Health Outcomes of Bariatric Surgery
减肥手术的长期心理健康结果
  • 批准号:
    9352800
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Long-term Mental Health Outcomes of Bariatric Surgery
减肥手术的长期心理健康结果
  • 批准号:
    9922248
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Long-term Mental Health Outcomes of Bariatric Surgery
减肥手术的长期心理健康结果
  • 批准号:
    9076320
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了