Durable Visible Light-activated Antiviral Coatings for Fabrics Used for Personal

用于个人织物的耐用可见光激活抗病毒涂层

基本信息

  • 批准号:
    7537997
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2008-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Influenza and other enveloped viruses are responsible for hundreds of thousands of deaths worldwide each year and cost the US economy over $70 billion each year in medical costs and lost work. A new approach to preventing the spread of viral infections in general, and influenza in particular, would be of benefit. Influenza enters the body through the nose or throat. NIOSH estimates that 90 million N95 filtering faceplate respirators will be needed to protect workers in the healthcare sector alone during a 42-day outbreak, likely requiring re-use of respirators. Opportunities exist for simple, efficacious decontamination methods that reduce the risk of infection through handling a contaminated respirator and that do not compromise respirator effectiveness. Using our proprietary technology, LaamScience is developing coatings useful for a durable, self-regenerating, and cost- effective N95 mask with a broad spectrum of viral inactivation. Importantly, the mechanism of inactivation will not lead to microbial resistance. We are developing a fiber treatment using photoactive dyes that inactivate enveloped viruses upon illumination with visible light. Candidate dyes have been chosen that generate the most singlet oxygen [the active antiviral agent] per unit light intensity for light sources simulating solar, incandescent, and fluorescent lighting. We propose to modify air filtration textiles with these dye coatings and test efficacy to significantly inactivate influenza viruses trapped on the face mask fiber. The objective of this phase I feasibility project is to develop effective, stable dye-carrier combinations that will provide inexpensive filtration textiles with high antiviral activity. Dye-carrier combinations will be optimized to preserve dye activity upon attachment to the carrier. Coating or "Finishing" methods will be defined for applying the photoactive dye-carrier combinations to air filtration surfaces that allow maximum singlet oxygen generation / antiviral activity. The efficacy of modified surfaces will be determined by dosing the surfaces with virus, exposing them to selected light intensities, temperature, and humidity conditions and assaying the rate and extent of viral inactivation. Milestones are: 1] Select the most cost-effective dye-carrier combinations that retain the highest level of singlet oxygen production and antiviral activity; 2] Develop an efficient, scaleable attachment method to retain maximum antiviral activity; 3] Determine coating stability and effectiveness under likely conditions of use. For commercialization the optimized coatings must inactivate more than 99.9% of a challenge inoculum of influenza virus within one hour under typical conditions of use. Our long-term objective is to use these coated fabrics to produce personal protective equipment capable of inactivating microorganisms, reducing the bioburden on these items and reducing the potential for disease transmission. PUBLIC HEALTH RELEVANCE Masks and respirators are intended to reduce the wearer's exposure to small airborne particles including bacteria, fungi, and viruses. The goal of the research is to determine feasibility of attaching a microbe- inactivating coating to material used in masks, thereby reducing the microbe burden on the mask surface and making it less likely that a user would contaminate their hands with active organisms when handling the mask. Ultimately this treatment will be incorporated into other personal protective equipment for first responders, healthcare personnel, and other essential workers to help reduce the incidence of infectious disease.
描述(申请人提供):流感和其他被包裹的病毒每年导致全球数十万人死亡,每年给美国经济造成超过700亿美元的医疗费用和失业。一种新的方法来预防病毒感染的传播,特别是流感,将是有益的。流感通过鼻子或喉咙进入人体。NIOSH估计,在42天的疫情爆发期间,仅医疗保健部门就需要9000万个N95过滤面板呼吸器来保护工人,可能需要重复使用呼吸器。存在通过处理受污染的呼吸器来降低感染风险并且不影响呼吸器有效性的简单、有效的去污方法。使用我们的专有技术,LaamScience正在开发用于耐用、自我再生和具有成本效益的N95口罩的涂料,该口罩具有广泛的病毒灭活效果。重要的是,灭活机制不会导致微生物产生耐药性。我们正在开发一种使用光活性染料的纤维处理方法,这种染料在可见光照射下可以灭活被包裹的病毒。对于模拟太阳能、白炽灯和荧光灯的光源,已经选择了每单位光强度产生最多单线态氧[活性抗病毒剂]的候选染料。我们建议用这些染料涂层对空气过滤纺织品进行改性,并测试其对捕获在面膜纤维上的流感病毒的显著灭活效果。这一第一阶段可行性项目的目标是开发有效、稳定的染料载体组合,以提供具有高抗病毒活性的廉价过滤纺织品。染料-载体组合将被优化,以在附着到载体上时保持染料活性。将定义涂层或“整理”方法,用于将光活性染料载体组合物应用于空气过滤表面,以允许最大限度地产生单线态氧/抗病毒活性。通过向表面添加病毒,将它们暴露在选定的光强度、温度和湿度条件下,并分析病毒灭活的速度和程度,将确定改性表面的效果。里程碑是:1)选择最具成本效益的染料载体组合,保持最高水平的单线态产氧量和抗病毒活性;2)开发一种高效、可扩展的附着方法,以保持最大的抗病毒活性;3)在可能的使用条件下确定涂层的稳定性和有效性。对于商业化,优化的涂层必须在典型使用条件下在一小时内对99.9%以上的挑战疫苗灭活流感病毒。我们的长期目标是使用这些涂层织物来生产能够灭活微生物的个人防护装备,减少这些物品上的生物堵塞,并降低疾病传播的可能性。与公共卫生相关的口罩和呼吸器旨在减少佩戴者暴露在空气中的微小颗粒物,包括细菌、真菌和病毒。这项研究的目的是确定在口罩中使用的材料上附着微生物灭活涂层的可行性,从而减少口罩表面的微生物负担,并使使用者在操作口罩时不太可能被活性微生物污染双手。最终,这种治疗将被纳入急救人员、医护人员和其他基本工作人员的其他个人防护装备,以帮助减少传染病的发生率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patrick D Mize其他文献

Patrick D Mize的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Seeing the light: high-power visible-light generation using silicate fibre
看到光:使用硅酸盐光纤产生高功率可见光
  • 批准号:
    DP230100617
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Projects
Water splitting system based on visible light responsive photocatalysts and carbon-based conductors
基于可见光响应光催化剂和碳基导体的水分解系统
  • 批准号:
    22KF0160
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of visible-light-induced cyclization reactions inside a molecular flask
分子瓶内可见光诱导环化反应的发展
  • 批准号:
    22KF0104
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: Catalyst Free Activation of Peroxydisulfate under Visible Light to Degrade Contaminants in Water: Elucidation of Kinetics and Mechanism
合作研究:可见光下无催化剂活化过二硫酸盐降解水中污染物:阐明动力学和机制
  • 批准号:
    2314719
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Simultaneous Microwave and UV-Visible Light Irradiation for Direct C–H Carboxylation with Chlorine Dioxide
用于直接 C 的同时微波和紫外-可见光照射
  • 批准号:
    23K13709
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAS: 2D-WS2 Supported 2D-ZnO Nanoislands for Visible-Light-Driven Photocatalysis
CAS:2D-WS2 支持的 2D-ZnO 纳米岛用于可见光驱动光催化
  • 批准号:
    2247800
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Catalyst Free Activation of Peroxydisulfate under Visible Light to Degrade Contaminants in Water: Elucidation of Kinetics and Mechanism
合作研究:可见光下无催化剂活化过二硫酸盐降解水中污染物:阐明动力学和机制
  • 批准号:
    2314720
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
New Synthetic Methods Utilizing Radical Cation Intermediates Enabled by Visible Light Photocatalysis
利用可见光光催化自由基阳离子中间体的新合成方法
  • 批准号:
    10751166
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
Invisible display-camera visible light communications using adversarial samples
使用对抗样本的隐形显示相机可见光通信
  • 批准号:
    23H01413
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of cooperative light-responsive functions of visible and near-infrared light-responsive biphotochromic molecules
可见光和近红外光响应双光致变色分子的协同光响应功能的开发
  • 批准号:
    23H01940
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了