Improving the Differential Diagnosis of Pneumonia and Congestive Heart Failure Us
改善肺炎和充血性心力衰竭的鉴别诊断
基本信息
- 批准号:7434091
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAlgorithmsAntibioticsAreaAsthmaBiological Neural NetworksBreathingCategoriesChronic Obstructive Airway DiseaseClassificationComputer softwareConditionCongenital Heart DefectsCongestive Heart FailureCountCracklesDataDatabasesDevelopmentDiagnosisDiagnosticDifferential DiagnosisDiseaseDiureticsElectronicsEquipmentExpert SystemsGoalsGrantHeart SoundsHeart failureHeart murmurHome environmentHospital NursingIntensive Care UnitsLeadLegal patentLungLung diseasesMedicalMethodsNursesNursing HomesOilsPatient CarePatient MonitoringPatientsPattern RecognitionPersonal Digital AssistantPhasePhysicians&apos OfficesPneumoniaPublic HealthPulmonary FibrosisPulmonary Heart DiseaseRateResearchRhonchusRiskShippingShipsSourceSpecificityStethoscopesSystemTechniquesTechnologyTelemedicineUncertaintyUnited StatesUnited States Food and Drug AdministrationVisiting NurseWheezingbaseclinically significantcomputerizedimprovedinterstitialnoninvasive diagnosispatient home caresensorsoundtelemeteringtransmission process
项目摘要
DESCRIPTION (provided by applicant): Stethographics has developed automated lung and heart sound products, based on 3 granted U.S. patents and 2 FDA approvals. Our Pocket PC based system gathers sounds via a contact sensor in a simple and practical way. The system automatically detects and quantifies crackles, wheezes, rhonchi, squawks and heart murmurs. 3M Littmann, the world} s largest stethoscope company, bundles all E4000 electronic stethoscopes with our Sound Analysis Software. We propose a research plan that will lead to development of a} smart} stethoscope. In addition to extracting sound features like crackle count, wheeze rate, and heart murmur grade, the incorporated neural network algorithms will provide a probable cause of these abnormal sounds such as pneumonia, congestive heart failure, or heart abnormality. We expect the smart stethoscope to find its applications in many settings: in physician's offices, hospitals, nursing homes - essentially everywhere the stethoscope is used. In addition, new areas of exploitation include settings where doctoral expertise or stationary medical equipment is not always available, and nurse is the main source of medical help: on the ships, oil rigs, embassies and home care by visiting nurses. The diagnostic information provided by the smart stethoscope can be used locally or telemetered. We have initiated this research by tackling two common illnesses: pneumonia (PN) and congestive heart failure (CHF). It is estimated that 5 million people in the United States have CHF. Although in many instances the diagnosis of these conditions is easily made, it is not uncommon, particularly in the Intensive Care Unit setting, for it to be unclear as to which illness a patient has. In cases of doubt the patient is often treated for both. Yet diuretics are likely not good for patients with pneumonia in the absence of coexisting heart failure and it is not good practice to subject patients to the risk of antibiotics unnecessarily. Our preliminary results in 151 patients with 2 or more crackles per breath (CHF=70; PN=81) indicate that the crackles differ significantly in these two conditions. Classification algorithms based on crackles features were able to separate the two disorders with a sensitivity of 0.91 and specificity of 0.82. In Phase I we plan to retrospectively study the database of over 1,000 patients using pattern recognition methods in order to develop the expert system that can differentiate PN, CHF, interstitial pulmonary fibrosis (IPF), and normal patients. In Phase II we will expand the system to include diagnosis of asthma, COPD, and cardiac murmurs. In Phase III we will incorporate the expert system into a smart stethoscope. PUBLIC HEALTH RELEVANCE: This research is expected to provide new medical diagnostic software that can be incorporated into a smart stethoscope. The use of the smart stethoscope will be particularly relevant in settings where doctoral expertise or stationary medical equipment is not always available and nurse is the main source of medical help. Automated diagnostics with the smart stethoscope can simplify and improve care for patients in nursing homes, especially by detecting early signs of pneumonia and home monitoring of patients with cardiopulmonary disorders.
描述(由申请人提供):Stethographics基于3项授权的美国专利和2项FDA批准开发了自动化肺音和心音产品。我们的基于Pocket PC的系统通过接触式传感器以简单实用的方式收集声音。该系统自动检测和量化爆裂声,喘息声,干罗音,尖叫声和心脏杂音。世界上最大的听诊器公司3 M Littmann将所有E4000电子听诊器与我们的声音分析软件捆绑在一起。我们提出了一个研究计划,将导致发展的一个智能听诊器。除了提取声音特征,如爆裂声计数,喘息率和心脏杂音等级外,结合的神经网络算法将提供这些异常声音的可能原因,如肺炎,充血性心力衰竭或心脏异常。我们希望智能听诊器能在许多环境中找到应用:医生的办公室,医院,疗养院-基本上在使用听诊器的任何地方。此外,新的开发领域包括博士专业知识或固定医疗设备并不总是可用的环境,护士是医疗帮助的主要来源:在船上,石油钻井平台,大使馆和上门护士的家庭护理。智能听诊器提供的诊断信息可以在本地使用或遥测。我们通过解决两种常见疾病开始了这项研究:肺炎(PN)和充血性心力衰竭(CHF)。据估计,美国有500万人患有CHF。虽然在许多情况下,这些疾病的诊断很容易,但并不罕见,特别是在重症监护室环境中,不清楚患者患有何种疾病。在怀疑的情况下,患者通常会接受两种治疗。然而,利尿剂可能对没有合并心力衰竭的肺炎患者没有好处,并且不必要地使患者承受抗生素的风险也不是一个好的做法。我们对151例每次呼吸有2次或2次以上湿罗音的患者(CHF=70; PN=81)的初步结果表明,这两种情况下的湿罗音有显著差异。基于爆裂音特征的分类算法能够区分这两种疾病,灵敏度为0.91,特异性为0.82。在第一阶段,我们计划使用模式识别方法回顾性研究超过1,000例患者的数据库,以开发能够区分PN、CHF、间质性肺纤维化(IPF)和正常患者的专家系统。在第二阶段,我们将扩展该系统,包括哮喘,COPD和心脏杂音的诊断。在第三阶段,我们将把专家系统集成到智能听诊器中。公共卫生相关性:这项研究有望提供新的医疗诊断软件,可以集成到智能听诊器中。在医生专业知识或固定医疗设备并不总是可用并且护士是医疗帮助的主要来源的情况下,智能听诊器的使用将特别相关。使用智能听诊器进行自动诊断可以简化和改善护理院患者的护理,特别是通过检测肺炎的早期症状和心肺疾病患者的家庭监测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RAYMOND L H MURPHY其他文献
RAYMOND L H MURPHY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RAYMOND L H MURPHY', 18)}}的其他基金
Pulmonary Diagnosis By Multichannel Lung Sound Analyzer
多通道肺音分析仪进行肺部诊断
- 批准号:
6486222 - 财政年份:2002
- 资助金额:
$ 15万 - 项目类别:
CLINICAL VALUE OF LUNG SOUNDS VISUALIZED BY STETHOGRAM
通过听诊图可视化肺音的临床价值
- 批准号:
3500575 - 财政年份:1985
- 资助金额:
$ 15万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant














{{item.name}}会员




