4-DIMENSIONAL LV TISSUE TRACKING IN CAD FROM TAGGED MRI
通过标记 MRI 在 CAD 中进行 4 维左心室组织追踪
基本信息
- 批准号:6402793
- 负责人:
- 金额:$ 29.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-01 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (Adapted from Applicant's Abstract): The applicants propose to
develop and validate new image analysis methods aimed at a more accurate,
reproducible, and automated approach to assessment of regional left ventricular
(LV) function and visualization of 3D cardiac motion from tagged MRI data of
patients with coronary artery disease (CAD). The applicants have developed a
number of methods for analysis of tagged MRI data which have been validated in
phantoms and animal models of myocardial infarction (MI). They propose to
continue development of these techniques which utilize all of the available
stripe information, including tag intersections and linear tag lines, in
automatically taking LV deformations and reconstructing dense displacements at
all myocardial points, with the goal of routinely applying these techniques to
patient data. The advantage of the developed methods is that since displacement
vectors will be available at all myocardial points, indices of LV function will
also be available everywhere in the myocardium. These indices can be summed
over local myocardial regions resulting in segmental function scores. In human
studies, the developed methods will be applied to images acquired from normal
volunteers, patients with pharmacologic stress-induced myocardial ischemia,
patients with old, healed MI, and patients with ischemic dilated
cardiomyopathy. In each case, segmental wall motion as assessed by the
algorithms will be compared and correlated with validated clinical techniques
such as 2D echocardiography, cine-MRI, and Gadolinium (Gd) contrast MRI. Thus,
the specific aims are: (a) To measure statistical distribution (mean and
standard deviation) of segmental function scores from 3D + t (short-axis and
long-axis) tagged MRI at rest and under pharmacologic (dobutamine) stress in
normal controls. (b) To measure the function scores as determined from 2D + t
(short-axis) tagged MRI during pharmacologic stress and classified into normal,
hypokinetic, or akinetic classes in patients with stress-induced ischemia.
These labels will then be statistically correlated to labels assigned to the
same segments by 2D echocardiography and cine-NIRI. (c) To measure segmental
function scores as determined from 3D + t (short-axis and long-axis) tagged
NIRI at rest and classified into normal, hypokinetic, akinetic, or dyskinetic
classes in patients with an old, healed MI. The labels will be statistically
compared to non-nal or akinetic labels assigned to the same segment from 2D
echocardiography and cine-MRI, and with Gd contrast MRI. (d) To measure the
segmental function scores from 3D + t (short-axis and long-axis) tagged MRI at
rest and classified into normal, hypokinetic, akinetic, or dyskinetic classes
in patients with ischemic, dilated cardiomyopathy. The labels will be
statistically compared to labels assigned to the same segment from 2D
echocardiography and cine-MRI.
描述(改编自申请人摘要):申请人提出
开发和验证新的图像分析方法,旨在更准确、
可重复性的、自动化的局部左心室评估方法
(LV)基于标记化MRI数据的心脏三维运动功能和可视化
冠心病(CAD)患者。申请者已经开发出一种
用于分析标记的MRI数据的方法的数量已在
心肌梗塞(MI)的幻影和动物模型。他们提议
继续开发这些技术,利用所有可用的
中的条带信息,包括标记交点和线性标记线
自动获取LV变形并重建密集位移点
所有心肌点,目标是常规地应用这些技术来
病人数据。所开发的方法的优点是由于位移
载体将在所有心肌点可用,左心功能指数将
在心肌中也随处可见。这些指数可以加在一起
导致节段功能评分的局部心肌区域。在人类中
研究表明,所开发的方法将应用于从正常人体获取的图像
志愿者,药物应激引起的心肌缺血患者,
陈旧性、治愈的心肌梗死患者和缺血扩张的患者
心肌病。在每种情况下,节段性室壁运动由
算法将与经过验证的临床技术进行比较和关联
例如2D超声心动图、电影MRI和Gd(Gd)增强MRI。因此,
具体目标是:(A)衡量统计分布(平均值和
3d+t节段功能评分的标准差)(短轴和
长轴)标记的MRI在静息和药物(多巴酚丁胺)应激下
正常对照组。(B)测量根据2D+t确定的功能分数
(短轴)药物应激期间标记的MRI,并分类为正常,
应激性脑缺血患者的运动功能减退或无运动状态。
然后,这些标签将在统计上与分配给
二维超声心动图和Cine-NIRI检查相同节段。(C)分段测量
根据标记的3D+t(短轴和长轴)确定的功能分数
静息状态下的NIRI,分为正常、运动不足、无运动或运动障碍
已治愈的陈旧性心肌梗塞患者的课程。标签将被统计出来
与从2D分配给相同节段的非NAL或无动力标签进行比较
超声心动图和电影MRI,Gd增强MRI。(D)测量
3D+t(短轴和长轴)标记的MRI的节段功能评分
休息,并分为正常、运动不足、无运动或运动障碍类别
在缺血性、扩张型心肌病患者中。标签将是
与从2D分配给相同线段的标签进行统计比较
超声心动图和电影核磁共振成像。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AMIR A AMINI其他文献
AMIR A AMINI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AMIR A AMINI', 18)}}的其他基金
4D Flow MRI in Assessment of True Severe Low-Gradient Aortic Stenosis
4D Flow MRI 评估真正的严重低梯度主动脉瓣狭窄
- 批准号:
10735953 - 财政年份:2023
- 资助金额:
$ 29.31万 - 项目类别:
4-DIMENSIONAL LV TISSUE TRACKING IN CAD FROM TAGGED MRI
通过标记 MRI 在 CAD 中进行 4 维左心室组织追踪
- 批准号:
6197519 - 财政年份:2000
- 资助金额:
$ 29.31万 - 项目类别:
4-DIMENSIONAL LV TISSUE TRACKING IN CAD FROM TAGGED MRI
通过标记 MRI 在 CAD 中进行 4 维左心室组织追踪
- 批准号:
6813757 - 财政年份:2000
- 资助金额:
$ 29.31万 - 项目类别:
4-DIMENSIONAL LV TISSUE TRACKING IN CAD FROM TAGGED MRI
通过标记 MRI 在 CAD 中进行 4 维左心室组织追踪
- 批准号:
6527304 - 财政年份:2000
- 资助金额:
$ 29.31万 - 项目类别:
METHODS FOR ANALYSIS OF TAGGED MR CARDIAC IMAGES
标记 MR 心脏图像的分析方法
- 批准号:
6184044 - 财政年份:1998
- 资助金额:
$ 29.31万 - 项目类别:
METHODS FOR ANALYSIS OF TAGGED MR CARDIAC IMAGES
标记 MR 心脏图像的分析方法
- 批准号:
2471547 - 财政年份:1998
- 资助金额:
$ 29.31万 - 项目类别:
METHODS FOR ANALYSIS OF TAGGED MR CARDIAC IMAGES
标记 MR 心脏图像的分析方法
- 批准号:
6389619 - 财政年份:1998
- 资助金额:
$ 29.31万 - 项目类别:
METHODS FOR ANALYSIS OF TAGGED MR CARDIAC IMAGES
标记 MR 心脏图像的分析方法
- 批准号:
6043944 - 财政年份:1998
- 资助金额:
$ 29.31万 - 项目类别:
相似海外基金
FAIRClinical: FAIR-ification of Supplementary Data to Support Clinical Research
FAIRClinical:补充数据的 FAIR 化以支持临床研究
- 批准号:
EP/Y036395/1 - 财政年份:2024
- 资助金额:
$ 29.31万 - 项目类别:
Research Grant
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
- 批准号:
10764456 - 财政年份:2023
- 资助金额:
$ 29.31万 - 项目类别:
The IDeA State Consortium for a Clinical Research Resource Center: Increasing Clinical Trials in IDeA States through Communication of Opportunities, Effective Marketing, and WorkforceDevelopment
IDeA 州临床研究资源中心联盟:通过机会交流、有效营销和劳动力发展增加 IDeA 州的临床试验
- 批准号:
10715568 - 财政年份:2023
- 资助金额:
$ 29.31万 - 项目类别:
The Mayo Clinic NeuroNEXT Clinical Research Site
梅奥诊所 NeuroNEXT 临床研究网站
- 批准号:
10743328 - 财政年份:2023
- 资助金额:
$ 29.31万 - 项目类别:
Addressing Underperformance in Clinical Trial Enrollments: Development of a Clinical Trial Toolkit and Expansion of the Clinical Research Footprint
解决临床试验注册表现不佳的问题:开发临床试验工具包并扩大临床研究足迹
- 批准号:
10638813 - 财政年份:2023
- 资助金额:
$ 29.31万 - 项目类别:
Improving Multicultural Engagement in Clinical Research through Partnership with Federally Qualified Health Centers and Community Health Worker Programs
通过与联邦合格的健康中心和社区卫生工作者计划合作,改善临床研究中的多元文化参与
- 批准号:
10823828 - 财政年份:2023
- 资助金额:
$ 29.31万 - 项目类别:
The Minnesota TMD IMPACT Collaborative: Integrating Basic/Clinical Research Efforts and Training to Improve Clinical Care
明尼苏达州 TMD IMPACT 协作:整合基础/临床研究工作和培训以改善临床护理
- 批准号:
10828665 - 财政年份:2023
- 资助金额:
$ 29.31万 - 项目类别:
Promoting a Culture Of Innovation, Mentorship, Diversity and Opportunity in NCI Sponsored Clinical Research: NCI Research Specialist (Clinician Scientist) Award Application of Janice M. Mehnert, M.D.
在 NCI 资助的临床研究中促进创新、指导、多样性和机会文化:Janice M. Mehnert 医学博士的 NCI 研究专家(临床科学家)奖申请
- 批准号:
10721095 - 财政年份:2023
- 资助金额:
$ 29.31万 - 项目类别:
Clinical Research Center for REstoration of NEural-based Function in the Real World (RENEW)
现实世界神经功能恢复临床研究中心 (RENEW)
- 批准号:
10795328 - 财政年份:2023
- 资助金额:
$ 29.31万 - 项目类别:
Clinical Research and Academic Success in Obstetrics & Gynecology
产科临床研究和学术成就
- 批准号:
10828252 - 财政年份:2023
- 资助金额:
$ 29.31万 - 项目类别:














{{item.name}}会员




