Role of spontaneous activity towards the assembly and function of neocortical circuits
自发活动对新皮质回路的组装和功能的作用
基本信息
- 批准号:10737253
- 负责人:
- 金额:$ 54.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAction PotentialsAdolescentAdultAgeArchitectureBehaviorBrainCellsCholinergic ReceptorsCritical PathwaysDataDevelopmentDimensionsEarly DiagnosisElectrophysiology (science)Environmental Risk FactorEyeFunctional disorderGene ExpressionGeneticGenetic TranscriptionGoalsHeadImpairmentIn VitroIndividualKnowledgeLateral Geniculate BodyLifeMaintenanceMeasuresMental disordersMethodologyMolecularMusNeocortexNeonatalNervous SystemNeurodevelopmental DisorderNeuronsPatternPerceptionResearchRetinaRoleSensoryShapesSliceSynapsesSystemTestingThalamic structureTherapeutic InterventionV1 neuronVisionVisualVisual CortexVisual SystemWorkarea striatabiomarker identificationcell typecholinergicclinically relevantcognitive abilitycognitive functionexperimental studyhigh riskin vivoinnovationinsightneocorticalneural circuitneurotransmissionnovelpostnatalprogramspublic health relevancesegregationsingle-cell RNA sequencingsuperior colliculus Corpora quadrigeminatranscriptomicsvisual informationvisual processing
项目摘要
Modified Project Summary/Abstract Section
Spontaneous patterns of activity is thought to be instructive for the assembly and maturation of multiple brain circuits across several species. Spontaneously driven activity is expected to guide the formation of a neonatal architectural circuit template, which in turn impacts neocortical function throughout life. Disturbances of spontaneous activity patterns have great clinical relevance, as they are liable to lead to permanent miswiring of neocortical circuits, a leading cause for neurodevelopmental and psychiatric disorders. Accordingly, various studies reveal that disturbances in genetic and environmental factors during neonatal development present high risk for neurodevelopmental and psychiatric disorders. Yet little is known about how spontaneous patterns of activity control the emergence and maintenance of neocortical connectivity, and how it ultimately impacts in vivo circuit function. Our goal is to understand how spontaneous patterns of network activity orchestrate the proper maturation and function of the visual cortex. The central hypothesis is that spontaneous neonatal activity, such as retinal waves, is critical for the establishment of precise long-range and local neocortical circuits, and that altered visual processing and cognitive functions develop when activity dependent connectivity is disrupted early in life in the primary visual cortex. The rationale for these studies is that they will provide novel insights into neocortical dysfunction in neurodevelopmental and psychiatric disorders. The specific aims are: 1) Assess the role of spontaneous activity on neonatal gene expression in the visual cortex. 2) Assess the role of spontaneous activity on visual cortex synaptic connectivity. 3) Determine the impact of neonatal spontaneous patterns of activity on visual processing at later ages. Under the first aim, single-cell RNA sequencing experiments will be performed in order to elucidate how spontaneous activity impact gene expression at neonatal ages. Under the second aim, slice electrophysiology experiments will be performed in order to elucidate how spontaneous activity impact synaptic maturation. Under the third aim, in vivo recordings will be performed in order to investigate the role of spontaneous activity for the in vivo function of the visual cortex. The research proposed in this application is innovative because it will open new avenues for studying the role of spontaneous activity for transcriptomics, connectivity, and in vivo function of the neocortex. The proposed research is significant because it will provide novel mechanistic insights into how spontaneous activity might guide the formation of a neonatal architectural circuit template, which in turn impacts neocortical function throughout life.
修改项目摘要/摘要部分
自发的活动模式被认为对几个物种的多个脑回路的组装和成熟具有指导意义。自发驱动的活动预计将引导新生儿架构电路模板的形成,这反过来又会影响整个生命过程中的新皮层功能。自发活动模式的紊乱具有很大的临床意义,因为它们容易导致新皮层回路的永久性错误布线,这是神经发育和精神疾病的主要原因。因此,各种研究表明,新生儿发育期间遗传和环境因素的干扰对神经发育和精神疾病具有高风险。然而,人们对自发活动模式如何控制新皮层连接的出现和维持,以及它最终如何影响体内电路功能知之甚少。我们的目标是了解网络活动的自发模式如何协调视觉皮层的适当成熟和功能。中心假设是自发的新生儿活动,如视网膜波,是建立精确的远程和局部新皮层回路的关键,并且当初级视觉皮层中的活动依赖连接在生命早期被破坏时,视觉处理和认知功能发生改变。这些研究的基本原理是,他们将提供新的见解,新皮质功能障碍的神经发育和精神疾病。具体目标是:1)评估自发活动对新生儿视皮层基因表达的作用。2)评估自发活动对视皮层突触连接的作用。3)确定新生儿自发活动模式对后期视觉处理的影响。在第一个目标下,将进行单细胞RNA测序实验,以阐明自发活动如何影响新生儿年龄的基因表达。在第二个目标下,将进行切片电生理学实验,以阐明自发活动如何影响突触成熟。在第三个目标下,将进行体内记录,以研究自发活动对视觉皮层体内功能的作用。本申请中提出的研究是创新的,因为它将为研究转录组学,连接性和新皮层体内功能的自发活动的作用开辟新的途径。这项研究意义重大,因为它将为自发活动如何引导新生儿架构电路模板的形成提供新的机制见解,从而影响整个生命过程中的新皮层功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Renata Batista-Brito其他文献
Renata Batista-Brito的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Renata Batista-Brito', 18)}}的其他基金
Investigating abnormalities in top-down cortical processing and behavior in a model of the 22q11.2 deletion
研究 22q11.2 缺失模型中自上而下的皮质处理和行为的异常
- 批准号:
10649058 - 财政年份:2023
- 资助金额:
$ 54.37万 - 项目类别:
Long-range inhibitory neuron circuit organization and cortical function
长程抑制神经元回路组织和皮质功能
- 批准号:
10567648 - 财政年份:2023
- 资助金额:
$ 54.37万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 54.37万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 54.37万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 54.37万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 54.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 54.37万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 54.37万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 54.37万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 54.37万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 54.37万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 54.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




