Cellular Mechanisms of State-Dependent Processing in Visual Cortex

视觉皮层状态相关处理的细胞机制

基本信息

  • 批准号:
    10736387
  • 负责人:
  • 金额:
    $ 40.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Cellular mechanisms of state-dependent processing in visual cortex Current understanding of neuronal mechanisms mediating processing of visual information and visual perception is largely based on results from experiments on either anesthetized or awake and attentive brains. However, these two states represent two extremes on a continuum of states of alertness, and it is known that both humans and animals perceive and respond to stimuli when non-attentive, nonalert and even during light sleep. Indeed, recent studies in awake mice and rabbits revealed that transitions between alert and nonalert states dramatically change the operation of thalamic and cortical neurons along the visual pathway. However, we have a limited knowledge of changes of synaptic inputs, receptive fields and response properties of different types of cortical neurons over a broad range of states, the cellular mechanisms that drive these state- dependent changes, and how these state-dependent changes affect cortical processing of visual information. To address these gaps in our knowledge, we will exploit advantages of the visual system of rabbit, an experimental animal that can sit quietly for hours and exhibits very limited eye movements while spontaneously and naturally transitioning between alert, nonalert/drowsy and sleep states. We will make intracellular recordings from visual cortex (V1) neurons and extracellular recordings from neurons in the visual thalamus (LGN) in retinotopically aligned regions, in chronic experiments, while drug-free subjects transition between different brain states. We will (a) identify different types of cortical projection neurons and interneurons in different cortical layers electrophysiologically and using antidromic and ortodromic microstimulation in different brain structures; (b) characterize their receptive fields and response properties using a battery of visual stimuli; (c) assess the contribution of excitation and inhibition in neuronal responses, and characterize single-unit computations by analyzing the transformation of subthreshold activity into spike trains during responses to visual stimuli and injection of fluctuating currents; (d) rigorously quantify each brain state and transition between them using their characteristic signatures in the EEG recorded in the hippocampus and neocortex. These experiments will provide unique data on how thalamic inputs, visual responses and receptive fields in cortical neurons of different types change over a broad range of brain states, and investigate mechanisms of this state-dependence in terms of changes of synaptic inputs, single-unit computations, and excitation/inhibition balance. Results of the proposed research will help to achieve the next level of understanding of how brain state affects visual processing and visual perception. According to the National Highway Traffic Safety Administration, more than 1,550 people are killed and over 71,000 are injured each year in accidents caused by decreased attention and drowsiness. The proposed work will lead to a better understanding of state-dependence of visual processing and will inform further research and development of tools for detection of decreased attention and prevention of "drowsy driving" accidents. It will also inform further research into cognitive disorders associated with deficits in perception caused by impaired attention and/or dysfunction of mechanisms regulating wake-sleep cycle.
视觉皮层状态依赖性加工的细胞机制

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yulia Bereshpolova其他文献

Yulia Bereshpolova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 40.25万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 40.25万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 40.25万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 40.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 40.25万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 40.25万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 40.25万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 40.25万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 40.25万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 40.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了