Optimization of monitoring, prediction and phenotyping of deterioration of inhospital patients using machine learning and multimodal real time data
使用机器学习和多模态实时数据优化住院患者病情恶化的监测、预测和表型分析
基本信息
- 批准号:10735863
- 负责人:
- 金额:$ 81.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-16 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdmission activityAdultAlgorithmsCOVID-19 patientCaringCessation of lifeClinicalClinical DataCluster AnalysisCommunitiesCountryDataData SetDeteriorationDevicesDiagnosisDiagnosticElectronic Health RecordFloorHealthHealth systemHeart ArrestHospitalizationHospitalsHourInpatientsIntensive Care UnitsInterventionIntubationLifeLinkMachine LearningManualsMeasurementMeasuresMedicalModelingMonitorMorbidity - disease rateNatural Language ProcessingNeural Network SimulationNursesOperative Surgical ProceduresOutcomePatient AdmissionPatient MonitoringPatient-Focused OutcomesPatientsPhenotypeProspective cohortPublishingRecommendationRecording of previous eventsRecurrenceResearchResourcesRiskSleepSpecific qualifier valueStaff Work LoadSymptomsTarget PopulationsTimeTrainingValidationWorkWorkloadbaseclinical predictorscohortcostdeep learning modeldesigndiagnostic valuehigh riskimprovedinnovative technologieslarge datasetslearning strategymachine learning algorithmmachine learning predictionmodel designmonitoring devicemortalitymultimodalitypatient populationpersonalized careprediction algorithmpredictive modelingpredictive toolspreventable deathprospectiverecurrent neural networkresponsesupport toolstargeted treatmenttooltreatment strategyunsupervised learningvectorwardwearable devicewearable monitor
项目摘要
Efficient patient monitoring on the medical-surgical wards is crucial, because up to 5% of hospitalized adult
patients deteriorate, requiring transfer to the intensive care unit (ICU) or intervention of a rapid response team
(RRT). Currently, vital sign measurement is performed on all patients every 4-6 hours, even the most stable.
For stable patients, this monitoring is often unnecessary, whereas for higher-risk patients, vital sign monitoring
every 4-6 hours is often not adequate. To address this need, we will leverage one of the largest, most diverse
clinical datasets in the country, using electronic health record (EHR) data from 2.4M hospitalized patients to
generate machine learning (ML) predictive models, designed to optimize patient monitoring. We will use
continuous monitoring (CM) devices to identify in advance patients likely to deteriorate and specify the clinical
underlying reasons of deterioration to enable timely interventions. We have applied and published similar ML
approaches on other cohorts, including: 1) deep recurrent neural networks (RNNs) to avoid unnecessary
overnight vitals; 2) deep learning models that use continuous monitoring data to predict clinical alerts up to 4
hours ahead of time; and 3) natural language processing on medical notes and unsupervised clustering of
patients. Our approach involves collecting prospectively CM data from a targeted population of 2,000
hospitalized patients, and developing and validating models, both retrospectively and prospectively. Our
approach will allow us to: Identify stable patients admitted on the medical-surgical wards to optimize
vital signs monitoring. We will train a RNN model using EHR data from 2.4M hospitalizations, to predict, after
vital signs are measured, stable patients for the next 8 hours, and enable eliminating the next vitals
measurement. We retrospectively will validate the model, using cross-affiliation validation, and prospectively,
silently validate it in 5 different hospitals. Develop a clinical deterioration algorithm, based on continuous
monitoring data and clinical hard outcomes. We will collect prospective data from a targeted population of
2,000 inpatients, who are admitted on medical-surgical floors in our largest hospital, with a modified early
warning score higher than 5. The CM patches will start collecting data upon admission. We will use combined
clinical hard outcomes (death, intubation, cardiac arrest, unplanned ICU transfer, RRTs) to train two deep-
learning models to predict deterioration up to 4 hours and up to 24 hours before. Define the early and late
phenotypic substrates of hospitalized patient deterioration. Using the clinical data of 56K deteriorated
patients from Aim 1 (EHR variables and extracted presenting symptoms) 4 hour and 24 hours prior to
deterioration, we will perform unsupervised cluster analysis to identify unique clusters linked to phenotypes of
deterioration. We will associate derived phenotype groups to clinical outcomes and treatments, to inform more
targeted treatment and intervention strategies. We aim to develop new tools to align patient needs with
resources, and deliver more efficient, effective, personalized, and proactive care to hospitalized patients.
对内外科病房进行有效的病人监控至关重要,因为高达5%的住院成年人
患者病情恶化,需要转移到重症监护病房(ICU)或快速反应小组的干预
(RRT)。目前,所有患者每4-6小时进行一次生命体征测量,即使是最稳定的患者也是如此。
对于病情稳定的患者,这种监测通常是不必要的,而对于高危患者,生命体征监测通常是不必要的。
每4-6小时一次往往是不够的。为了满足这一需求,我们将利用规模最大、最多样化的
全国临床数据集,使用240万住院患者的电子健康记录(EHR)数据
生成机器学习(ML)预测模型,旨在优化患者监控。我们将使用
持续监测(CM)设备,以提前识别可能恶化的患者并指定临床
恶化的根本原因,使及时干预成为可能。我们已经申请并发布了类似的ML
关于其他队列的方法,包括:1)深度递归神经网络(RNN),以避免不必要的
夜间生命体征;2)深度学习模型,使用连续监测数据预测临床警报,最高可达4
提前数小时;以及3)医疗记录的自然语言处理和无监督的聚类
病人。我们的方法包括从2,000名目标人口中前瞻性地收集CM数据
住院患者,以及开发和验证模型,包括回顾和前瞻性。我们的
方法将使我们能够:确定内外科病房收治的稳定患者,以优化
生命体征监测。我们将使用240万住院患者的电子病历数据来训练RNN模型,以预测
生命体征被测量,患者在接下来的8小时内保持稳定,并能够消除下一个生命体征
测量。我们将使用跨从属验证来回顾验证该模型,并前瞻性地,
在5家不同的医院默默地验证它。开发一种临床恶化算法,基于连续的
监测数据和临床硬结果。我们将从目标人群中收集预期数据
2,000名住院病人,他们住在我们最大的医院的内外科楼层,早期修改了
警告分数高于5。CM补丁将在入院时开始收集数据。我们将使用组合式
临床硬结局(死亡、插管、心脏骤停、计划外ICU转院、RRT)以训练两个深度-
学习模型可以提前4小时和24小时预测病情恶化。定义早点和晚点
住院患者病情恶化的表型底物。使用56K恶化的临床数据
来自AIM 1的患者(EHR变量和提取的主要症状)在4小时和24小时之前
恶化,我们将执行非监督聚类分析,以确定与表型相关联的独特聚类
恶化。我们将把衍生表型群与临床结果和治疗联系起来,以提供更多信息
有针对性的治疗和干预策略。我们的目标是开发新的工具,使患者的需求与
资源,并为住院患者提供更高效、更有效、更个性化和更主动的护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karina W. Davidson其他文献
Myocardial infarction: survivors' and spouses' stress, coping, and support.
心肌梗塞:幸存者和配偶的压力、应对和支持。
- DOI:
10.1046/j.1365-2648.2000.01454.x - 发表时间:
2000 - 期刊:
- 影响因子:3.8
- 作者:
Miriam Stewart;Karina W. Davidson;D. Meade;A. Hirth;Lydia Makrides - 通讯作者:
Lydia Makrides
Putting Evidence Into Practice: An Update on the US Preventive Services Task Force Methods for Developing Recommendations for Preventive Services
将证据付诸实践:美国预防服务工作组制定预防服务建议方法的更新
- DOI:
10.1370/afm.2946 - 发表时间:
2023 - 期刊:
- 影响因子:4.4
- 作者:
Michael J. Barry;Tracy A. Wolff;L. Pbert;Karina W. Davidson;Tina M. Fan;A. Krist;Jennifer S. Lin;Iris R. Mabry;C. Mangione;Justin Mills;D. Owens;Wanda Nicholson - 通讯作者:
Wanda Nicholson
CENTRALIZED, STEPPED, PATIENT PREFERENCE-BASED TREATMENT FOR PATIENTS WITH POST-ACUTE CORONARY SYNDROME DEPRESSION: CODIACS VANGUARD RANDOMIZED CONTROL TRIAL
- DOI:
10.1016/s0735-1097(13)60159-x - 发表时间:
2013-03-12 - 期刊:
- 影响因子:
- 作者:
Karina W. Davidson;J. Thomas Bigger;Matthew Burg;Robert Carney;William F. Chaplin;Susan Czajkowski;Joan Duer-Hefele;Nancy Frasure-Smith;Kenneth Freedland;Donald Haas;Allan Jaffe;Joseph Ladapo;Francois Lespérance;Vivian Medina;Jonathan Newman;Gabrielle Osorio;Faith Parsons;Joseph Schwartz;Jonathan Shaffer;Peter Shapiro - 通讯作者:
Peter Shapiro
Development and preliminary testing of a brief intervention for modifying CHD-predictive hostility components
开发和初步测试用于修改 CHD 预测敌意成分的简短干预措施
- DOI:
10.1007/bf01857766 - 发表时间:
1996 - 期刊:
- 影响因子:3.1
- 作者:
Y. Gidron;Karina W. Davidson - 通讯作者:
Karina W. Davidson
Edinburgh Research Explorer Risk thresholds for alcohol consumption
爱丁堡研究探索者饮酒的风险阈值
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
A. Wood;S. Kaptoge;A. Butterworth;P. Willeit;S. Warnakula;T. Bolton;Ellie Paige;Michael J Sweeting;S. Burgess;S. Bell;W. Astle;A. Koulman;R. Selmer;Cyrus Cooper;J. Gallacher;A. G. Camara;M. Bergmann;C. Crespo;Karina W. Davidson;C. Sacerdote;R. Tumino;D. Blazer;A. Linneberg;D. Kromhout;L. Arrióla - 通讯作者:
L. Arrióla
Karina W. Davidson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karina W. Davidson', 18)}}的其他基金
Influencing Basic Behavioral Mechanisms of Action while targeting Daily Walking in Those at Risk for Cardiovascular Disease: Science of Behavior Change Factorial Experiment of Behavioral Change
以日常步行为目标,影响有心血管疾病风险的人的基本行为机制:行为改变的科学 行为改变的析因实验
- 批准号:
10208093 - 财政年份:2021
- 资助金额:
$ 81.48万 - 项目类别:
Influencing Basic Behavioral Mechanisms of Action while targeting Daily Walking in Those at Risk for Cardiovascular Disease: Science of Behavior Change Factorial Experiment of Behavioral Change
以日常步行为目标,影响有心血管疾病风险的人的基本行为机制:行为改变的科学 行为改变的析因实验
- 批准号:
10441381 - 财政年份:2021
- 资助金额:
$ 81.48万 - 项目类别:
Influencing Basic Behavioral Mechanisms of Action while targeting Daily Walking in Those at Risk for Cardiovascular Disease: Science of Behavior Change Factorial Experiment of Behavioral Change
以日常步行为目标,影响有心血管疾病风险的人的基本行为机制:行为改变的科学 行为改变的析因实验
- 批准号:
10673605 - 财政年份:2021
- 资助金额:
$ 81.48万 - 项目类别:
Roybal Center for Personalized Trials: Physical Activity Promotion to Foster Healthy Aging
皇家个性化试验中心:促进体育活动促进健康老龄化
- 批准号:
10463635 - 财政年份:2020
- 资助金额:
$ 81.48万 - 项目类别:
MAVEN: Developing Diverse Senior Scientists Leaders
MAVEN:培养多元化的资深科学家领导者
- 批准号:
10480898 - 财政年份:2020
- 资助金额:
$ 81.48万 - 项目类别:
MAVEN: Developing Diverse Senior Scientists Leaders
MAVEN:培养多元化的资深科学家领导者
- 批准号:
10246305 - 财政年份:2020
- 资助金额:
$ 81.48万 - 项目类别:
MAVEN: Developing Diverse Senior Scientists Leaders
MAVEN:培养多元化的资深科学家领导者
- 批准号:
10685470 - 财政年份:2020
- 资助金额:
$ 81.48万 - 项目类别:
Roybal Center for Personalized Trials: Physical Activity Promotion to Foster Healthy Aging
皇家个性化试验中心:促进体育活动促进健康老龄化
- 批准号:
10668265 - 财政年份:2020
- 资助金额:
$ 81.48万 - 项目类别: