Gatekeeping glycan metabolism in the human gut microbiome
人类肠道微生物组中的聚糖代谢把关
基本信息
- 批准号:10737225
- 负责人:
- 金额:$ 38.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAsparagineBacteriaBacterial Antibiotic ResistanceBacteroidetesBinding ProteinsBiochemicalCarbohydratesCell surfaceCollaborationsColon CarcinomaComplexConsensusDevelopmentDietDietary FiberDigestionDiseaseDisparateEmploymentEndoglycosidasesEnergy-Generating ResourcesEnvironmentEnzymesEventExhibitsExoglycosidasesGatekeepingGenesGeneticGenetic TechniquesGlycobiologyGlycoproteinsGoalsGrowthHealthHumanHydrolysisIndividualInflammatoryInflammatory Bowel DiseasesIntestinesKineticsLinkMannoseMass Spectrum AnalysisMeasuresMembraneMetabolismMethodsMicrobeMolecularMucinsMucous MembraneNutrientObesityPathway interactionsPhysiologyPlayPolysaccharidesProcessProteinsResearchRoleSpecificityStructureSubstrate SpecificityWorkbacterial metabolismbiophysical techniquesdesigndysbiosisgut bacteriagut microbesgut microbiomegut microbiotahuman diseaseimmunoregulationimprovedinnovationlink proteinmembermicrobial communitymicrobiotamicroorganismnovelnovel therapeuticsnutrient absorptionpathogenpathogenic bacteriasensorsuperresolution microscopy
项目摘要
The overall goal of this application is to define mechanisms of glycan metabolism by bacteria inhabiting the
human gut microbiome so as to establish novel therapeutic pathways to manipulating the composition of the gut
microbial community to treat myriad human diseases. The gut microbiota has a profound effect on human health
and physiology, providing the host benefits such as modulation of immune development, inhibition of pathogen
colonization, digestion of dietary fibers and absorption of nutrients. Abnormalities in microbiota composition, or
dysbiosis, however, have been implicated in numerous and diverse disease states. A critical variable that
dictates the composition and physiology of the microbiota is the influx of glycans into the intestine, mostly from
diet and host mucosal secretions. Given the broad diversity of glycans that enter and exist in the gut,
microorganisms must possess varied and efficient strategies for competing for these nutrients, on which they
depend as a critical energy source. Despite the prominence of glycans in the human intestine and its documented
role in controlling important aspects of health and disease, the molecular mechanisms of glycan breakdown and
import employed by gut microbes remain poorly understood. This severely limits our ability to build an intellectual
framework for the design of methods and molecules with which to remodel the composition of the gut microbiota
in order to improve human health – for instance, to favor commensal over pathogenic bacteria or to limit the
growth of inflammatory or antibiotic-resistant bacteria. Here, we propose mechanistic studies using biochemical,
biophysical and genetic techniques to define pathways employed by gut microbes for the degradation and import
of various glycans, and to determine the structures and functions of key enzymes that release glycans, as well
as their interactions and functional cooperation with proteins that capture these released glycans. This work is
significant because it addresses molecular mechanisms involved in the major human health burden of dysbiosis.
The proposed studies are innovative both technically and conceptually – from the development and employment
of novel mass spectrometry-based methods for measuring the specificity and kinetics of protein deglycosylation
to the hypotheses that a single bacterium can express multiple enzymes with the same glycan specificity in order
to survive in distinct environments and that glycan-hydrolyzing enzymes have evolved to become a new class of
cell surface glycan-binding proteins. The research plan will be accomplished through ongoing and new
collaborations between the Sundberg, Koval and Mallagaray labs, who bring non-overlapping, complementary
and synergistic strengths in structural glycobiology and super-resolution microscopy, resulting in a collaborative
team ideally suited to this project.
本应用程序的总体目标是确定居住在细菌的糖代谢机制
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The mycobacterial glycoside hydrolase LamH enables capsular arabinomannan release and stimulates growth.
分枝杆菌糖苷水解酶 LamH 能够释放荚膜阿拉伯甘露聚糖并刺激生长。
- DOI:10.1101/2023.10.26.563968
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Franklin A
- 通讯作者:Franklin A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ERIC JOHN SUNDBERG其他文献
ERIC JOHN SUNDBERG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ERIC JOHN SUNDBERG', 18)}}的其他基金
Engineering mono-fucosylated IgGs to fine-tune antibody-mediated effector functions
工程化单岩藻糖基化 IgG 来微调抗体介导的效应功能
- 批准号:
10647938 - 财政年份:2023
- 资助金额:
$ 38.61万 - 项目类别:
Engineering antibody effector functions by Glycan Remodeling Yeast Display
通过聚糖重塑酵母展示工程化抗体效应子功能
- 批准号:
10494252 - 财政年份:2021
- 资助金额:
$ 38.61万 - 项目类别:
Engineering antibody effector functions by Glycan Remodeling Yeast Display
通过聚糖重塑酵母展示工程化抗体效应子功能
- 批准号:
10373251 - 财政年份:2021
- 资助金额:
$ 38.61万 - 项目类别:
Rationalizing glycoengineering strategies for immunotherapeutic antibodies
免疫治疗抗体糖工程策略的合理化
- 批准号:
10377400 - 财政年份:2020
- 资助金额:
$ 38.61万 - 项目类别:
Structure & Function of Clostridium difficile Type IV Pili
结构
- 批准号:
10087197 - 财政年份:2020
- 资助金额:
$ 38.61万 - 项目类别:
Towards one-step enzymatic defucosylation of antibodies
抗体的一步酶促去岩藻糖基化
- 批准号:
10176408 - 财政年份:2020
- 资助金额:
$ 38.61万 - 项目类别:
Towards one-step enzymatic defucosylation of antibodies
抗体的一步酶促去岩藻糖基化
- 批准号:
10041315 - 财政年份:2020
- 资助金额:
$ 38.61万 - 项目类别:
Rationalizing glycoengineering strategies for immunotherapeutic antibodies
免疫治疗抗体糖工程策略的合理化
- 批准号:
10598482 - 财政年份:2020
- 资助金额:
$ 38.61万 - 项目类别:
相似国自然基金
TCA源性酰胺衍生物Asparagine维护抗LPO防御系统的机制及在抑制PTOA肌肉萎缩中的作用
- 批准号:82372495
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Metabolic regulation of the anti-tumor CD8+ T cell response to PD-1 by asparagine
天冬酰胺对抗肿瘤 CD8 T 细胞对 PD-1 反应的代谢调节
- 批准号:
10672044 - 财政年份:2023
- 资助金额:
$ 38.61万 - 项目类别:
NSF Postdoctoral Fellowship in Biology: Illuminating mechanisms of essential asparagine-linked glycosylation enzymes
NSF 生物学博士后奖学金:阐明必需天冬酰胺连接糖基化酶的机制
- 批准号:
2305964 - 财政年份:2023
- 资助金额:
$ 38.61万 - 项目类别:
Fellowship Award
Asparagine metabolism and function in nitrogen signaling
天冬酰胺代谢和氮信号传导中的功能
- 批准号:
RGPIN-2018-05478 - 财政年份:2022
- 资助金额:
$ 38.61万 - 项目类别:
Discovery Grants Program - Individual
Defining the signalling network linking pathogen infection and asparagine accumulation in wheat grain
定义连接病原体感染和小麦籽粒中天冬酰胺积累的信号网络
- 批准号:
BB/W007134/1 - 财政年份:2022
- 资助金额:
$ 38.61万 - 项目类别:
Research Grant
Field assessment of ultra-low asparagine, low acrylamide, gene edited wheat
超低天冬酰胺、低丙烯酰胺、基因编辑小麦的田间评估
- 批准号:
BB/T017007/1 - 财政年份:2021
- 资助金额:
$ 38.61万 - 项目类别:
Research Grant
Asparagine metabolism and function in nitrogen signaling
天冬酰胺代谢和氮信号传导中的功能
- 批准号:
RGPIN-2018-05478 - 财政年份:2021
- 资助金额:
$ 38.61万 - 项目类别:
Discovery Grants Program - Individual
Modulation of asparagine bioavailability and stress response signaling to enhance T cell robustness and maximize immunotherapy
调节天冬酰胺生物利用度和应激反应信号传导以增强 T 细胞稳健性并最大化免疫治疗
- 批准号:
10550241 - 财政年份:2021
- 资助金额:
$ 38.61万 - 项目类别:
Modulation of asparagine bioavailability and stress response signaling to enhance T cell robustness and maximize immunotherapy
调节天冬酰胺生物利用度和应激反应信号传导以增强 T 细胞稳健性并最大化免疫治疗
- 批准号:
10352414 - 财政年份:2021
- 资助金额:
$ 38.61万 - 项目类别:
PEG-asparaginase depletion of asparagine in asparagine-rich and asparagine-depleted diets
PEG-天冬酰胺酶消耗富含天冬酰胺和缺乏天冬酰胺的饮食中的天冬酰胺
- 批准号:
466988 - 财政年份:2021
- 资助金额:
$ 38.61万 - 项目类别:
Studentship Programs
Asparagine metabolism and function in nitrogen signaling
天冬酰胺代谢和氮信号传导中的功能
- 批准号:
RGPIN-2018-05478 - 财政年份:2020
- 资助金额:
$ 38.61万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




