Defining the signalling network linking pathogen infection and asparagine accumulation in wheat grain

定义连接病原体感染和小麦籽粒中天冬酰胺积累的信号网络

基本信息

  • 批准号:
    BB/W007134/1
  • 负责人:
  • 金额:
    $ 99.4万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

This project arises from discoveries that an amino acid called asparagine accumulates in wheat grain in response to disease and that the plant's response to floral infection by a disease-causing fungus called Fusarium graminearum (Fg) involves a protein called SnRK1. SnRK1 is a master regulator of plant metabolism and it controls the activity of genes encoding an enzyme called asparagine synthetase that is responsible for making asparagine. The project will involve a multidisciplinary team from Rothamsted Research, with collaboration from a team from University College Dublin (not eligible for BBSRC funding but fully involved in the project through the sharing of resources, expertise and data analyses). It will define what we are calling a signalling hub (a control point within a network) involving SnRK1 and partner proteins that links pathogen infection with asparagine synthesis and accumulation in wheat grain. We believe that the increase in asparagine concentration induced through the activation of this hub upon Fg infection is an important part of how plants defend themselves when under attack from disease-causing organisms. Fg causes Fusarium head blight disease, which reduces yield and grain quality, and contaminates grain with toxic compounds called mycotoxins, of which the most common is called deoxynivalenol (DON). SnRK1 is involved in the regulation of defence mechanisms when wheat is infected by Fg and a protein that partners with SnRK1, called TaFROG, has also been shown to contribute to Fg and DON resistance. Recent work has shown that Fg infection and DON treatment both affect SnRK1 but in different ways, with Fg infection causing the SnRK1 protein to be divided into smaller proteins in a way not seen with DON on its own. Subsequently, a protein that is secreted by the fungus, called OSP24, has been shown to partner with SnRK1 and to cause SnRK1 to be broken down. TaFROG, on the other hand, competes with OSP24 for partnering with SnRK1 and protects SnRK1 from degradation. These fascinating discoveries mean that this project can focus directly on the signalling hub and its relationships to other proteins in SnRK1's wider network. That network likely includes several proteins called bZIP transcription factors. These proteins control the activity of some target genes, possibly including asparagine synthetase genes involved in asparagine synthesis, and have characteristics suggesting that they could be controlled by SnRK1. We aim to identify all the components of this signalling hub linking Fg infection with asparagine accumulation in wheat grain. We will dissect the hub in different types of wheat using different strains of Fg, such as strains that do not make DON and/or the OSP24 protein. We will use a technique called RNA-seq that will enable us to identify all of the genes affected by infection by Fg or treatment with DON, looking in particular for those that could be involved in making or breaking down asparagine. We will use protein-based studies to identify additional hub components, and find out if the bZIP transcription factors we are interested in do control the activity of asparagine synthetase genes. Finally, we will see if the ability of different Fg strains to cause disease is linked to their effect on the signalling hub and asparagine. These experiments will enable us to model the signalling hub and perform further experiments to target the genes involved in the hub so that we can test whether our model is correct. SnRK1 has been implicated in other plant defence mechanisms, including those against herbivores, viruses and bacteria, as well as other fungi. In addition, the amount of asparagine in wheat grain has implications for food safety because asparagine can be converted into a cancer-causing contaminant called acrylamide during baking. This means that the project, while focussed on basic science, will have potential impact for a range of stakeholders in the agrifood sector.
该项目源于发现一种称为天冬酰胺的氨基酸在小麦籽粒中积累以应对疾病,并且植物对一种称为禾谷镰刀菌(Fg)的致病真菌的花感染的反应涉及一种称为SnRK 1的蛋白质。SnRK 1是植物代谢的主要调节因子,它控制编码一种称为天冬酰胺合成酶的基因的活性,该酶负责制造天冬酰胺。该项目将涉及来自Rothamsted Research的多学科团队,与来自都柏林大学学院都柏林的团队合作(没有资格获得BBSRC资助,但通过共享资源,专业知识和数据分析充分参与该项目)。它将定义我们所谓的信号中枢(网络中的控制点),涉及SnRK 1和伴侣蛋白,将病原体感染与小麦籽粒中天冬酰胺的合成和积累联系起来。我们认为,通过激活这个枢纽诱导的天冬酰胺浓度增加Fg感染是植物如何保护自己时,从致病生物体的攻击的重要组成部分。Fg引起镰刀菌头枯病,其降低产量和谷物品质,并且用称为真菌毒素的有毒化合物污染谷物,其中最常见的是称为脱氧雪腐镰刀菌烯醇(DON)。当小麦被Fg感染时,SnRK 1参与调节防御机制,并且与SnRK 1合作的蛋白质TaFROG也被证明有助于Fg和DON抗性。最近的研究表明,Fg感染和DON治疗都影响SnRK 1,但以不同的方式,Fg感染导致SnRK 1蛋白质以DON本身所未见的方式被分成更小的蛋白质。随后,由真菌分泌的一种称为OSP 24的蛋白质已被证明与SnRK 1合作并导致SnRK 1被分解。另一方面,TaFROG与OSP 24竞争与SnRK 1的合作,并保护SnRK 1免受降解。这些令人着迷的发现意味着该项目可以直接关注信号中枢及其与SnRK 1更广泛网络中其他蛋白质的关系。该网络可能包括几种称为bZIP转录因子的蛋白质。这些蛋白质控制一些靶基因的活性,可能包括参与天冬酰胺合成的天冬酰胺合成酶基因,并且具有表明它们可以由SnRK 1控制的特征。我们的目标是确定所有的组件,这个信号枢纽连接Fg感染与天冬酰胺积累在小麦籽粒。我们将使用不同的Fg菌株,如不产生DON和/或OSP 24蛋白的菌株,在不同类型的小麦中解剖枢纽。我们将使用一种称为RNA-seq的技术,使我们能够识别受Fg感染或DON治疗影响的所有基因,特别是那些可能参与制造或分解天冬酰胺的基因。我们将使用蛋白质为基础的研究,以确定额外的枢纽组件,并找出我们感兴趣的bZIP转录因子是否控制天冬酰胺合成酶基因的活性。最后,我们将观察不同的Fg菌株致病的能力是否与它们对信号中枢和天冬酰胺的影响有关。这些实验将使我们能够对信号中枢进行建模,并进行进一步的实验以靶向参与中枢的基因,以便我们可以测试我们的模型是否正确。SnRK 1与其他植物防御机制有关,包括对抗食草动物、病毒和细菌以及其他真菌的防御机制。此外,小麦中天冬酰胺的含量对食品安全有影响,因为天冬酰胺在烘焙过程中会转化为一种致癌污染物,称为丙烯酰胺。这意味着该项目虽然侧重于基础科学,但将对农业食品部门的一系列利益相关者产生潜在影响。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identification and functional characterisation of a locus for target site integration in Fusarium graminearum.
禾谷镰刀菌靶位点整合位点的鉴定和功能表征。
Uncovering plant epigenetics: new insights into cytosine methylation in rye genomes.
  • DOI:
    10.1093/jxb/erad144
  • 发表时间:
    2023-06-27
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Kaur, Navneet;Nayakoti, Swapna;Brock, Natasha;Halford, Nigel G.
  • 通讯作者:
    Halford, Nigel G.
Reducing the Risk of Acrylamide and Other Processing Contaminant Formation in Wheat Products.
  • DOI:
    10.3390/foods12173264
  • 发表时间:
    2023-08-30
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Kaur, Navneet;Halford, Nigel G.
  • 通讯作者:
    Halford, Nigel G.
Epigenetic switch reveals CRISPR/Cas9 response to cytosine methylation in plants.
  • DOI:
    10.1111/nph.18405
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Raffan, Sarah;Kaur, Navneet;Halford, Nigel G.
  • 通讯作者:
    Halford, Nigel G.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nigel Halford其他文献

Nigel Halford的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nigel Halford', 18)}}的其他基金

21ENGBIO: Re-engineering amino acid metabolism in wheat grain
21ENGBIO:重新设计小麦籽粒中的氨基酸代谢
  • 批准号:
    BB/W011999/1
  • 财政年份:
    2022
  • 资助金额:
    $ 99.4万
  • 项目类别:
    Research Grant
Field assessment of ultra-low asparagine, low acrylamide, gene edited wheat
超低天冬酰胺、低丙烯酰胺、基因编辑小麦的田间评估
  • 批准号:
    BB/T017007/1
  • 财政年份:
    2021
  • 资助金额:
    $ 99.4万
  • 项目类别:
    Research Grant
Automated analysis of free amino acids for acrylamide reduction in wheat-based food matrixes: applications in food production and commercial testing
自动分析游离氨基酸以减少小麦食品基质中的丙烯酰胺:在食品生产和商业测试中的应用
  • 批准号:
    BB/P017541/1
  • 财政年份:
    2016
  • 资助金额:
    $ 99.4万
  • 项目类别:
    Research Grant
BBSRC Embrapa: Temperature resilience of flowering in UK and Brazilian wheat (TempRe)
BBSRC Embrapa:英国和巴西小麦开花的温度恢复能力 (TempRe)
  • 批准号:
    BB/N004515/1
  • 财政年份:
    2015
  • 资助金额:
    $ 99.4万
  • 项目类别:
    Research Grant
Establishing scientific exchange and collaboration on crop science between Rothamsted Research and the University of Colombo, Sri Lanka
洛桑研究中心与斯里兰卡科伦坡大学建立作物科学领域的科学交流与合作
  • 批准号:
    BB/K004476/1
  • 财政年份:
    2012
  • 资助金额:
    $ 99.4万
  • 项目类别:
    Research Grant
Genetic improvement of wheat to reduce the potential for acrylamide formation during processing.
对小麦进行遗传改良,以减少加工过程中丙烯酰胺形成的可能性。
  • 批准号:
    BB/I020918/1
  • 财政年份:
    2011
  • 资助金额:
    $ 99.4万
  • 项目类别:
    Research Grant
Producing 'low acrylamide risk' potatoes
生产“低丙烯酰胺风险”马铃薯
  • 批准号:
    BB/G018995/1
  • 财政年份:
    2009
  • 资助金额:
    $ 99.4万
  • 项目类别:
    Research Grant

相似国自然基金

富含半胱氨酸分泌亚家族3蛋白与钙释放通道的相互作用
  • 批准号:
    30870508
  • 批准年份:
    2008
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
信号转导分子PAK4相互作用蛋白质的筛选
  • 批准号:
    30370736
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Systematically defining the T cell signalling network of the phosphatase CD45
系统定义磷酸酶 CD45 的 T 细胞信号网络
  • 批准号:
    BB/Y000587/1
  • 财政年份:
    2024
  • 资助金额:
    $ 99.4万
  • 项目类别:
    Research Grant
Understanding the function of microtubule-associated signalling networks in health and disease: role of adaptor proteins in network assembly
了解微管相关信号网络在健康和疾病中的功能:接头蛋白在网络组装中的作用
  • 批准号:
    2599452
  • 财政年份:
    2021
  • 资助金额:
    $ 99.4万
  • 项目类别:
    Studentship
Network and topological modelling of transition states in the Wnt signalling pathway.
Wnt 信号通路中过渡态的网络和拓扑建模。
  • 批准号:
    2596720
  • 财政年份:
    2021
  • 资助金额:
    $ 99.4万
  • 项目类别:
    Studentship
First-in-class neuroprotective therapy in acute ischemic stroke, poststroke cognitive impairment and mechanistically related diseases by network pharmacology of common signalling targets
通过常见信号靶标的网络药理学对急性缺血性中风、中风后认知障碍和机械相关疾病进行一流的神经保护治疗
  • 批准号:
    449729893
  • 财政年份:
    2020
  • 资助金额:
    $ 99.4万
  • 项目类别:
    WBP Position
Quantitative in vivo analysis of ligand-receptor interactions in the Wnt signalling network
Wnt 信号网络中配体-受体相互作用的定量体内分析
  • 批准号:
    2240970
  • 财政年份:
    2019
  • 资助金额:
    $ 99.4万
  • 项目类别:
    Studentship
Cell signalling network analyses using antibody microarrays
使用抗体微阵列进行细胞信号网络分析
  • 批准号:
    536865-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 99.4万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Linking second messenger nucleotide signalling with CO2 homeostasis in cyanobacteria: unravelling the SbtB-based network
将蓝藻中第二信使核苷酸信号传导与 CO2 稳态联系起来:解开基于 SbtB 的网络
  • 批准号:
    423441238
  • 财政年份:
    2019
  • 资助金额:
    $ 99.4万
  • 项目类别:
    Priority Programmes
The role of mTOR signalling in reconfiguring the metabolic network during TGFB-induced myofibroblast differentiation
mTOR信号在TGFB诱导的肌成纤维细胞分化过程中重构代谢网络中的作用
  • 批准号:
    2095135
  • 财政年份:
    2018
  • 资助金额:
    $ 99.4万
  • 项目类别:
    Studentship
Graph-based network models of cell-signalling in Idiopathic Pulmonary Fibrosis: integrated in silico and wet-lab approaches
特发性肺纤维化细胞信号传导的基于图的网络模型:集成到计算机和湿实验室方法中
  • 批准号:
    2136842
  • 财政年份:
    2018
  • 资助金额:
    $ 99.4万
  • 项目类别:
    Studentship
Regulatory mechanism for plant growth by brassinosteroid signalling network
油菜素内酯信号网络对植物生长的调控机制
  • 批准号:
    18H02140
  • 财政年份:
    2018
  • 资助金额:
    $ 99.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了