Translational control of gene expression in fungi
真菌基因表达的翻译控制
基本信息
- 批准号:10737339
- 负责人:
- 金额:$ 34.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AnabolismAspergillus fumigatusBiotechnologyCell physiologyCellsCoccidioides posadasiiCodeCoupledCryptococcus neoformansDataEnzymesGene ExpressionGeneticGoalsGrowthHealthHumanIn VitroInitiator CodonInositolInositol Metabolism PathwayKnowledgeMammalian CellMessenger RNAMetabolicMetabolic PathwayMetabolismMissionModelingMoldsMolecular Mechanisms of ActionNamesNeurospora crassaOpen Reading FramesPathway interactionsPeptidesPeptidyltransferasePhysiologicalProcessProductionProtein BiosynthesisProteinsRNARegulationRegulatory PathwayReporter GenesResearchResolutionRibosomesRoleScanningSiteSpecific qualifier valueStructureSystemTestingTherapeuticTranslatingTranslationsUnited States National Institutes of HealthWorkbiochemical toolsbiophysical toolsdisorder controlfungusgene productimprovedin vivoinositol 3-phosphateinsightmRNA Transcript DegradationmRNA Translationmodel organismnanomachinepathogenic fungusresponsesmall moleculewelfare
项目摘要
Summary
Translation of mRNA is a central cellular process, but the mechanisms that control it are not fully understood.
Up to 50% of eukaryotic mRNAs contain predicted upstream open reading frames (uORFs), but the roles of the
vast majority of these uORFs remain undetermined. In some cases, we know that this additional translational
capacity is evolutionarily conserved and serves critical functions in controlling gene expression. A special class
of these conserved uORFs encodes peptides that stall protein synthesis in response to the presence of small
metabolites. These nascent regulatory peptides act within the ribosome tunnel to arrest translation; by doing so,
they control the production of enzymes important in metabolism. However, there remain important gaps in
knowledge of the functions of uORFs. First, the mechanisms by which uORF-encoded peptides recognize small
molecules and stall eukaryotic ribosomes to control gene expression remain unclear. Second, the extent to which
uORFs are translated in cells under different conditions, the extent to which uORFs are evolutionarily conserved,
and how and why the translation of particular uORFs controls gene expression, or if their translation serves other
functions, is not known. To help bridge these gaps, we will determine the functions of a newly discovered
conserved fungal uORF peptide named the inositol regulatory peptide (IRP). Our data indicate that the IRP
regulates the expression of the first enzyme necessary for the synthesis of the important molecule inositol. We
know that the IRP, while fungal in origin, can regulate reporter genes in mammalian cells as well as the fungus
Neurospora crassa, in which we first discovered it. Using fungal and mammalian cell-free translation systems,
we obtained direct evidence for translational control by the IRP. We will use both in vivo and in vitro approaches
to determine the mechanism of action and physiological consequences of IRP function. In Aim 1, we will perform
functional analyses to determine the mechanism of action of the IRP. In Aim 2, we will perform structural analyses
to determine the mechanism of action of the IRP. Successful completion of the proposed work will provide
mechanistic information that should significantly increase our understanding of translational control mechanisms
that are generally important. It will provide new insights into regulatory and metabolic pathways that could be
important for developing strategies to manipulate metabolism to improve human health and welfare.
概括
mRNA的翻译是一种中央细胞过程,但是控制它的机制尚未完全理解。
多达50%的真核mRNA包含预测的上游开放式阅读框(UORFS),但是该角色的作用
这些UORF的绝大多数仍未确定。在某些情况下,我们知道这种额外的翻译
能力在进化上是保守的,并且在控制基因表达方面具有关键功能。一个特殊的课程
在这些保守的UORF中,编码肽,使蛋白质合成响应小的肽
代谢物。这些新生的调节肽在核糖体隧道内作用以阻止翻译。这样,
他们控制着代谢中重要的酶的产生。但是,仍然存在重要差距
了解UORF的功能。首先,UORF编码的肽识别小的机制很小
分子和档位真核核糖体以控制基因表达,尚不清楚。第二,程度
UORF在不同条件下在细胞中翻译,UORF在进化上保守的程度,
以及特定UORFS的翻译如何以及为什么控制基因表达,或者它们的翻译是否服务于其他
功能,尚不清楚。为了弥合这些差距,我们将确定新发现的功能
保守的真菌UORF肽称为肌醇调节肽(IRP)。我们的数据表明IRP
调节重要分子肌醇所必需的第一种酶的表达。我们
知道IRP虽然真菌起源,但可以调节哺乳动物细胞中的报告基因以及真菌
Neurospora Crassa,我们首先发现了它。使用真菌和无细胞翻译系统,
我们获得了IRP转化控制的直接证据。我们将使用体内和体外方法
确定IRP功能的作用机理和生理后果。在AIM 1中,我们将表演
功能分析以确定IRP的作用机理。在AIM 2中,我们将进行结构分析
确定IRP的作用机理。成功完成拟议的工作将提供
机械信息应大大增加我们对翻译控制机制的理解
通常很重要。它将为可能是监管和代谢途径提供新的见解
对于制定操纵代谢以改善人类健康和福利的策略很重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATTHEW Steven SACHS其他文献
MATTHEW Steven SACHS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATTHEW Steven SACHS', 18)}}的其他基金
Discovery and Analysis of Network Components via High Throughput Sequencing
通过高通量测序发现和分析网络组件
- 批准号:
8375312 - 财政年份:2004
- 资助金额:
$ 34.31万 - 项目类别:
Discovery and Analysis of Network Components via High Throughput Sequencing
通过高通量测序发现和分析网络组件
- 批准号:
8466989 - 财政年份:2004
- 资助金额:
$ 34.31万 - 项目类别:
Discovery and Analysis of Network Components via High Throughput Sequencing
通过高通量测序发现和分析网络组件
- 批准号:
7687820 - 财政年份:2004
- 资助金额:
$ 34.31万 - 项目类别:
Discovery and Analysis of Network Components via High Throughput Sequencing
通过高通量测序发现和分析网络组件
- 批准号:
8254481 - 财政年份:2004
- 资助金额:
$ 34.31万 - 项目类别:
Discovery and Analysis of Network Components via High Throughput Sequencing
通过高通量测序发现和分析网络组件
- 批准号:
8058764 - 财政年份:2004
- 资助金额:
$ 34.31万 - 项目类别:
CONTROL OF ARG-2 GENE EXPRESSION IN NEUROSPORA
神经孢子虫中 ARG-2 基因表达的控制
- 批准号:
2184963 - 财政年份:1992
- 资助金额:
$ 34.31万 - 项目类别:
CONTROL OF ARG-2 GENE EXPRESSION IN NEUROSPORA
神经孢子虫中 ARG-2 基因表达的控制
- 批准号:
2184964 - 财政年份:1992
- 资助金额:
$ 34.31万 - 项目类别:
CONTROL OF ARG-2 GENE EXPRESSION IN NEUROSPORA
神经孢子虫中 ARG-2 基因表达的控制
- 批准号:
2022580 - 财政年份:1992
- 资助金额:
$ 34.31万 - 项目类别:
CONTROL OF ARG-2 GENE EXPRESSION IN NEUROSPORA
神经孢子虫中 ARG-2 基因表达的控制
- 批准号:
2701566 - 财政年份:1992
- 资助金额:
$ 34.31万 - 项目类别:
CONTROL OF ARG-2 GENE EXPRESSION IN NEUROSPORA
神经孢子虫中 ARG-2 基因表达的控制
- 批准号:
2910104 - 财政年份:1992
- 资助金额:
$ 34.31万 - 项目类别:
相似国自然基金
土壤-作物系统中杀菌剂诱导的烟曲霉(Aspergillus fumigatus)对抗真菌药物抗药性:形成与机制
- 批准号:41271489
- 批准年份:2012
- 资助金额:75.0 万元
- 项目类别:面上项目
堆肥菌株Aspergillus fumigatus Z5纤维素酶转录限制因子creA基因的克隆及其功能研究
- 批准号:31201685
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A novel antisense therapeutic for treatment of Aspergillus fumigatus infections
一种治疗烟曲霉感染的新型反义疗法
- 批准号:
8714774 - 财政年份:2014
- 资助金额:
$ 34.31万 - 项目类别:
Expanding the Market and Success Rates for Myeloablative Cancer Treatments Using PUL-042, an Innate Immune Stimulant
使用先天免疫兴奋剂 PUL-042 扩大清髓性癌症治疗的市场和成功率
- 批准号:
9265919 - 财政年份:2011
- 资助金额:
$ 34.31万 - 项目类别:
Expanding the Market and Success Rates for Myeloablative Cancer Treatments Using PUL-042, an Innate Immune Stimulant
使用先天免疫兴奋剂 PUL-042 扩大清髓性癌症治疗的市场和成功率
- 批准号:
8875976 - 财政年份:2011
- 资助金额:
$ 34.31万 - 项目类别:
Expanding the Market and Success Rates for Myeloablative Cancer Treatments Using PUL-042, an Innate Immune Stimulant
使用先天免疫兴奋剂 PUL-042 扩大清髓性癌症治疗的市场和成功率
- 批准号:
9061821 - 财政年份:2011
- 资助金额:
$ 34.31万 - 项目类别: