Control of genomic integrity and virulence of Aspergillus fumigatus by ADP-ribosylation.
通过 ADP-核糖基化控制烟曲霉的基因组完整性和毒力。
基本信息
- 批准号:MR/X007472/1
- 负责人:
- 金额:$ 171.64万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Despite their ability to cause serious life-threatening illnesses, the major impact of fungi upon human health world-wide is often overlooked. However, fungal infections kill more people than malaria or tuberculosis. Aspergillus fumigatus, a common mould that we inhale every day, is a primary source of human disease. The threat of life-threatening fungal infections is rising with the increase in the vulnerable patient population and the appearance of drug resistant Aspergillus fumigatus variants. To overcome this problem and develop new treatment strategies, we must understand how Aspergillus can survive in a patient's body.The human immune system combats fungal infections partly by damaging the DNA of the invasive pathogen, thus severely restricting the microbe's ability to survive within the body. Therefore, disease-causing microbes have developed a sophisticated DNA repair machinery to survive in their hosts. However, in fungal pathogens, the mechanisms by which damaged DNA is recognised, the repair factors recruited, and a genomic catastrophe avoided are not well understood. My work focuses on a cellular signal termed ADP-ribosylation, which marks locations of DNA damage and attracts the repair machinery. By studying this signal, my work will provide invaluable insights into how Aspergillus defends itself against the host, potentially enabling us to design new therapies to treat drug-resistant fungi.Based on strong data, my hypothesis is that ADP-ribosylation is a crucial signal that coordinates the response to, and repair of, DNA damage. However, we do not currently understand 1) how the signal is generated in response to the DNA damage, 2) how it coordinates the repair machinery assembly, or 3) whether the signal is required to survive in the host. To address this, I will answer the following questions:1) What do the relevant signalling proteins look like? Seeing the 3D structure of these signalling proteins will help us understand how they work. This is challenging, because these proteins are about one million times smaller than a grain of rice. I will overcome this challenge by using a well-established technique called X-ray crystallography. This allows us - with the help of sophisticated computer software - to determine the 3D structure of target proteins from the patterns of light veering off a crystalline sample. Understanding the workings of the signalling proteins will help us address questions of how they function within fungal cells and in the future enable us to design novel drugs to treat infections.2) How does ADP-ribosylation regulate DNA repair? Since both DNA integrity and ADP-ribosylation signalling are essential for fungal survival, we must be able to control both at specific times within cells. To achieve this, I will use state-of-the-art techniques utilising light to induce DNA damage or remove proteins. I will then compare fungi with and without the ability to signal, asking questions like: Can repair happen without the signal? How does the fungus react to a constant state of emergency due to an inability to remove the signal after the repair? Does ADP-ribosylation signalling differ for different types of DNA damage?3) How does ADP-ribosylation support fungal survival in the host? The interplay of a microbe with its host is extremely complex, and thus insights gained from studying fungi outside the host cannot always explain what occurs during an infection. Therefore, I will use culturable immune cells and animal models, which have an infection response comparable to humans, to understand at which stages of infection ADP-ribosylation signalling is active and whether impairing it has beneficial outcomes for the host.Overall, this study will bring exciting new insights into fungal DNA repair, thus helping us to understand how these dangerous pathogens overcome a crucial aspect of host defence. This is likely to lead to new therapeutic strategies to combat life-threatening fungal infections.
尽管它们能够引起严重的危及生命的疾病,但真菌对全球人类健康的重大影响往往被忽视。然而,真菌感染比疟疾或结核病杀死更多的人。烟曲霉是我们每天吸入的一种常见霉菌,是人类疾病的主要来源。威胁生命的真菌感染的威胁随着脆弱患者群体的增加和耐药烟曲霉变种的出现而上升。为了克服这个问题并开发新的治疗策略,我们必须了解曲霉菌如何在患者体内存活。人体免疫系统通过破坏入侵病原体的DNA来对抗真菌感染,从而严重限制微生物在体内的生存能力。因此,致病微生物已经开发出一种复杂的DNA修复机制,以便在宿主中生存。然而,在真菌病原体中,识别受损DNA、招募修复因子和避免基因组灾难的机制尚不清楚。我的工作重点是一种称为ADP核糖基化的细胞信号,它标志着DNA损伤的位置并吸引修复机制。通过研究这个信号,我的工作将提供宝贵的见解曲霉菌如何抵御宿主,可能使我们能够设计新的疗法来治疗耐药真菌。基于强有力的数据,我的假设是,ADP-核糖基化是一个重要的信号,协调响应和修复,DNA损伤。然而,我们目前还不了解1)信号是如何响应DNA损伤而产生的,2)它如何协调修复机器组装,或者3)信号是否需要在宿主中存活。为了解决这个问题,我将回答以下问题:1)相关的信号蛋白是什么样的?看到这些信号蛋白的3D结构将有助于我们了解它们是如何工作的。这是具有挑战性的,因为这些蛋白质比一粒大米小一百万倍。我将通过使用一种被称为X射线晶体学的成熟技术来克服这一挑战。这使我们能够在复杂的计算机软件的帮助下,从光偏离晶体样品的模式中确定目标蛋白质的3D结构。了解信号蛋白的工作原理将有助于我们解决它们在真菌细胞内如何发挥作用的问题,并在未来使我们能够设计新的药物来治疗感染。由于DNA完整性和ADP-核糖基化信号对真菌生存至关重要,我们必须能够在细胞内的特定时间控制两者。为了实现这一目标,我将使用最先进的技术,利用光来诱导DNA损伤或去除蛋白质。然后,我将比较有和没有信号能力的真菌,提出这样的问题:没有信号,修复会发生吗?由于修复后无法移除信号,真菌对持续的紧急状态有何反应?ADP核糖基化信号对不同类型的DNA损伤是否不同?3)ADP核糖基化如何支持真菌在宿主中的存活?微生物与其宿主的相互作用极其复杂,因此从研究宿主外的真菌中获得的见解并不总能解释感染期间发生的事情。因此,我将使用可培养的免疫细胞和动物模型,它们具有与人类相当的感染反应,以了解在感染的哪个阶段ADP-核糖基化信号是活跃的,以及削弱它是否对宿主有益。总体而言,这项研究将为真菌DNA修复带来令人兴奋的新见解,从而帮助我们了解这些危险的病原体如何克服宿主防御的一个关键方面。这可能会导致新的治疗策略来对抗危及生命的真菌感染。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Solid-Phase Synthesis and Biological Evaluation of Peptides ADP-Ribosylated at Histidine
组氨酸 ADP 核糖基化肽的固相合成和生物学评价
- DOI:10.1002/ange.202313317
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Minnee H
- 通讯作者:Minnee H
ADP-ribosylation from molecular mechanisms to therapeutic implications.
- DOI:10.1016/j.cell.2023.08.030
- 发表时间:2023-10-12
- 期刊:
- 影响因子:64.5
- 作者:Suskiewicz, Marcin J.;Prokhorova, Evgeniia;Rack, Johannes G. M.;Ahel, Ivan
- 通讯作者:Ahel, Ivan
PARP14 is a PARP with both ADP-ribosyl transferase and hydrolase activities.
- DOI:10.1126/sciadv.adi2687
- 发表时间:2023-09-15
- 期刊:
- 影响因子:13.6
- 作者:Dukic, Nina;Stromland, Oyvind;Elsborg, Jonas Damgaard;Munnur, Deeksha;Zhu, Kang;Schuller, Marion;Chatrin, Chatrin;Kar, Pulak;Duma, Lena;Suyari, Osamu;Rack, Johannes Gregor Matthias;Baretic, Domagoj;Crudgington, Dorian Richard Kenneth;Groslambert, Josephine;Fowler, Gerissa;Wijngaarden, Sven;Prokhorova, Evgeniia;Rehwinkel, Jan;Schuler, Herwig;Filippov, Dmitri V.;Sanyal, Sumana;Ahel, Dragana;Nielsen, Michael L.;Smith, Rebecca;Ahel, Ivan
- 通讯作者:Ahel, Ivan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Johannes Rack其他文献
Johannes Rack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
果蝇转座元件和piRNA之间的基因组冲突及对杂交不育的影响
- 批准号:91431101
- 批准年份:2014
- 资助金额:120.0 万元
- 项目类别:重大研究计划
优化基因组策略搜寻中国藏族内耳畸形的致病基因及其致聋机制研究
- 批准号:31071099
- 批准年份:2010
- 资助金额:40.0 万元
- 项目类别:面上项目
电离辐射诱发间充质干细胞基因组非稳定性的研究
- 批准号:31070759
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
辣椒胞质雄性不育恢复性主效基因精密图谱分析
- 批准号:30800752
- 批准年份:2008
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Histone Demethylase Control of Post Implantation Development
组蛋白去甲基化酶对植入后发育的控制
- 批准号:
10367127 - 财政年份:2022
- 资助金额:
$ 171.64万 - 项目类别:
Immune control and genomic instability at micronuclei
微核的免疫控制和基因组不稳定性
- 批准号:
10365554 - 财政年份:2022
- 资助金额:
$ 171.64万 - 项目类别:
Histone Demethylase Control of Post Implantation Development
组蛋白去甲基化酶对植入后发育的控制
- 批准号:
10596098 - 财政年份:2022
- 资助金额:
$ 171.64万 - 项目类别:
Immune control and genomic instability at micronuclei
微核的免疫控制和基因组不稳定性
- 批准号:
10544747 - 财政年份:2022
- 资助金额:
$ 171.64万 - 项目类别:
A comprehensive quality control testing strategy for engineered cells
工程细胞的全面质量控制测试策略
- 批准号:
10330008 - 财政年份:2021
- 资助金额:
$ 171.64万 - 项目类别:
Proteolytic control of DNA interstrand cross-link repair and genome integrity
DNA 链间交联修复和基因组完整性的蛋白水解控制
- 批准号:
10358489 - 财政年份:2018
- 资助金额:
$ 171.64万 - 项目类别:
Proteolytic control of DNA interstrand cross-link repair and genome integrity
DNA 链间交联修复和基因组完整性的蛋白水解控制
- 批准号:
10090452 - 财政年份:2018
- 资助金额:
$ 171.64万 - 项目类别:
Spatial and temporal control of mitotic chromosome movements.
有丝分裂染色体运动的空间和时间控制。
- 批准号:
9383127 - 财政年份:2017
- 资助金额:
$ 171.64万 - 项目类别:
Spatial and temporal control of mitotic chromosome movements.
有丝分裂染色体运动的空间和时间控制。
- 批准号:
9754508 - 财政年份:2017
- 资助金额:
$ 171.64万 - 项目类别:
Spatial and temporal control of mitotic chromosome movements.
有丝分裂染色体运动的空间和时间控制。
- 批准号:
9704797 - 财政年份:2017
- 资助金额:
$ 171.64万 - 项目类别: