Enhancing the Effectiveness of Immunotherapies by T Cell Epigenetic Reprogramming
通过 T 细胞表观遗传重编程增强免疫疗法的有效性
基本信息
- 批准号:10737264
- 负责人:
- 金额:$ 64.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-05 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdoptive TransferAgonistBackBiological ModelsBreast AdenocarcinomaCD8-Positive T-LymphocytesCRISPR/Cas technologyCTLA4 geneCancer PatientCell physiologyCellsChromatinChronicClinicalDNA MethylationDNMT3aDataEffectivenessEndowmentEnzymesEpigenetic ProcessEquilibriumFailureFunctional disorderGenesGenetic TranscriptionGliomaGoalsGrantHumanImmune responseImmunotherapyIn VitroInfectionKnowledgeLinkLymphocytic choriomeningitis virusMalignant NeoplasmsMediatingMemoryMethodsModelingMolecular TargetMorbidity - disease rateMusNaturePathway interactionsPatientsPre-Clinical ModelRefractoryRejuvenationReportingResistanceRoleRouteSignal PathwaySignal TransductionSpecificitySystemT cell differentiationT-LymphocyteTechnologyTestingTherapeuticTransforming Growth Factor betaTransgenic OrganismsTranslatingViralViral CancerVirusVirus Diseasesantagonistchromatin remodelingchronic infectioncytotoxiccytotoxic CD8 T cellsepigenomeexhaustexhaustionexperimental studyfunctional restorationimmune checkpoint blockadein vitro Modelin vivoin vivo Modelinsightmelanomamortalitynovelnovel strategiespreventprogenitorprogrammed cell death protein 1programsreceptorrefractory cancerresponserestraintretroviral transductionstemstemnesssuccesssynergismtooltranscriptometumor
项目摘要
PROJECT SUMMARY
Cancer and chronic virus infections are significant causes of morbidity and mortality. While cytotoxic CD8 T
cells are the main killers of tumors or virus-infected cells, persistent stimulation of CD8 T cells during chronic
infections or cancer results in a gradual loss of their cytotoxic function as T cells progress towards a fully-
exhausted state. While immune checkpoint blockade (ICB) therapy allows partially-exhausted CD8 T cells to
functionally recover by blocking inhibitory signals, terminally-exhausted T cells remain nonresponsive to this
therapy. The inability of terminally-exhausted T cells to recover after ICB may explain why many cancer patients
fail to mount durable responses to ICB. We recently showed that de novo DNA methylation programming is
causally linked to the progression of T cells toward terminal exhaustion and poor response to ICB. Importantly,
we discovered that targeting T cell-intrinsic epigenetic programs synergized the efficacy of ICB during chronic
infection or cancer. Yet, the following questions represent major gaps in our current understanding of T cell
exhaustion: (1) How are these epigenetic changes acquired in exhausted T cells? (2) What are the upstream
signals that regulate the specificity of de novo DNA methylation programs in exhausted versus functional T cells?
(3) Can we reverse the epigenetic programming in exhausted T cells to the functional state while avoiding
transformation? Bridging these gaps will allow us to identify and target factors that apply “epigenetic brakes” to
CD8 T cell function. To address these questions, we have developed a novel in-vitro model of stable human T
cell dysfunction as a tractable tool that can guide our in-vivo experiments by providing first-line mechanistic
studies. First, we will employ cutting-edge approaches, such as CRISPR-Cas9 gene editing and retroviral
transduction, to test the hypothesis that specific tumor microenvironmental signals regulate epigenetic
programming in persistently stimulated CD8 T cells, which promotes their resistance to ICB therapy. We aim to
block and/or revert the progression toward the terminally-exhausted state by targeting components of this
signaling pathway while promoting counteracting pathways. Second, we aim to rebalance specific
microenvironmental signals to restore functionality and response in terminally-exhausted T cells. Using novel in-
vitro model systems of T cell dysfunction and complementary in-vivo models of chronic viral infection and cancer,
as well as cutting-edge technologies to profile DNA methylation, open chromatin landscape, and transcriptome
in CD8 T cells, our proposed studies can determine if targeting specific factors can remodel chromatin back into
an accessible state at effector and/or stemness-associated genes, leading to functionally-rejuvenated T cells.
These proposed studies will provide insights into how epigenetic programming can be reversed during
progression to T cell exhaustion that can be translated to reprogram terminally-exhausted T cells in clinical
settings, ultimately enhancing the efficacy of T cell immunotherapies.
项目概要
癌症和慢性病毒感染是发病和死亡的重要原因。而细胞毒性CD8 T
细胞是肿瘤或病毒感染细胞的主要杀手,慢性过程中持续刺激CD8 T细胞
感染或癌症会导致 T 细胞逐渐丧失细胞毒性功能。
疲惫状态。虽然免疫检查点阻断 (ICB) 疗法允许部分耗尽的 CD8 T 细胞
通过阻断抑制信号来功能恢复,最终耗尽的 T 细胞对此保持无反应
治疗。 ICB 后最终耗尽的 T 细胞无法恢复可能解释了为什么许多癌症患者
未能对 ICB 做出持久的反应。我们最近表明 DNA 从头甲基化编程是
与 T 细胞走向终末衰竭和对 ICB 反应不佳有因果关系。重要的是,
我们发现,针对 T 细胞内在表观遗传程序可协同 ICB 在慢性疾病期间的功效。
感染或癌症。然而,以下问题代表了我们目前对 T 细胞理解的主要差距
耗竭:(1) 这些表观遗传变化是如何在耗竭的 T 细胞中获得的? (2)上游有哪些
调节衰竭 T 细胞与功能 T 细胞中从头 DNA 甲基化程序特异性的信号?
(3) 我们能否将耗尽的 T 细胞的表观遗传编程逆转至功能状态,同时避免
转型?弥合这些差距将使我们能够识别并瞄准那些应用“表观遗传刹车”的因素
CD8 T 细胞功能。为了解决这些问题,我们开发了一种新型的稳定人类 T 细胞体外模型
细胞功能障碍作为一种易于处理的工具,可以通过提供一线机制来指导我们的体内实验
研究。首先,我们将采用尖端方法,例如CRISPR-Cas9基因编辑和逆转录病毒
转导,检验特定肿瘤微环境信号调节表观遗传的假设
对持续刺激的 CD8 T 细胞进行编程,从而促进其对 ICB 治疗的抵抗。我们的目标是
通过针对该状态的成分来阻止和/或恢复向最终疲惫状态的进展
信号通路,同时促进抵消通路。其次,我们的目标是重新平衡具体的
微环境信号可恢复最终耗尽的 T 细胞的功能和反应。使用新颖的in-
T 细胞功能障碍的体外模型系统和慢性病毒感染和癌症的补充体内模型,
以及描绘 DNA 甲基化、开放染色质景观和转录组的尖端技术
在 CD8 T 细胞中,我们提出的研究可以确定针对特定因子是否可以将染色质重塑回
效应子和/或干性相关基因的可接近状态,导致 T 细胞功能恢复活力。
这些拟议的研究将提供关于如何在过程中逆转表观遗传编程的见解。
进展至 T 细胞耗竭,可转化为在临床中重新编程最终耗竭的 T 细胞
设置,最终增强 T 细胞免疫疗法的功效。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hazem E. Ghoneim其他文献
T cell exhaustion—a memory locked behind scars
T 细胞衰竭——锁在伤疤背后的记忆
- DOI:
10.1038/s41590-021-00977-3 - 发表时间:
2021 - 期刊:
- 影响因子:30.5
- 作者:
Amira Yousif;Hazem E. Ghoneim - 通讯作者:
Hazem E. Ghoneim
A Novel Mechanism of Enhanced Susceptibility to Bacterial Pneumonia in Influenza-infected Hosts
流感感染宿主对细菌性肺炎易感性增强的新机制
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Hazem E. Ghoneim - 通讯作者:
Hazem E. Ghoneim
T cell exhaustion is Reinforced by Progressive De novo DNA Methylation Programming
渐进式 DNA 从头甲基化编程强化了 T 细胞耗竭
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:4.4
- 作者:
Ben Youngblood;Hazem E. Ghoneim;Hossam A. Abdelsamed;R. Carter;J. Hale;Eunseon Ahn;Sejin Im;Rafi Ahmed - 通讯作者:
Rafi Ahmed
Superinfections Influenza Infection Facilitates Bacterial Depletion of Alveolar Macrophages during McCullers
重复感染 流感感染促进麦卡勒病期间肺泡巨噬细胞的细菌消耗
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Hazem E. Ghoneim;P. Thomas - 通讯作者:
P. Thomas
Hazem E. Ghoneim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 64.01万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 64.01万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 64.01万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 64.01万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 64.01万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 64.01万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 64.01万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 64.01万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 64.01万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 64.01万 - 项目类别:
Research Grant