EEGLab: Software Analysis of Human Brain Dynamics

EEGLab:人脑动力学软件分析

基本信息

  • 批准号:
    10737479
  • 负责人:
  • 金额:
    $ 65.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

Electroencephalography (EEG), the first function brain activity imaging modality, has several natural advantages over metabolic brain imaging modalities. EEG is noninvasive, low-cost, and lightweight enough to be used for recording in lifelike situations. A major shift in scientific perspective on the nature and use of human electrophysiological data is now ongoing, a shift to using EEG data as a source-resolved, relatively high-resolution 3D cortical source imaging modality. The EEGLAB signal processing environment is a readily extensible open-source software project of the Swartz Center for Computational Neuroscience (SCCN) of the University of California, San Diego (UCSD). EEGLAB began as a set of EEG data analysis running on MATLAB (The Mathworks, Inc.), released by Makeig on the World Wide Web in 1997. EEGLAB was first released from SCCN in 2001. Now 21 years later, its reference paper {Delorme, 2004 #1} has over 18,450 citations (increasing by 6.8 per day), its opt-in EEGLAB discussion email list links over 6,000 researchers, its EEGLAB news reaches over 15,000, and an independent 2011 survey of 687 research respondents reported EEGLAB to be the software environment most widely used for electrophysiological data analysis in cognitive neuroscience. EEGLAB citations and other metrics show that EEGLAB adoption is still growing steadily. Here, we will greatly augment the power of the EEGLAB environment by providing support for processing both intracranial (iEEG, sEEG) and mobile brain/body imaging (MoBI) data (EEG and behavior), and will further integrate tools for performing high-resolution source imaging from EEG (or iEEG) data. Its suitability for multi-modal brain/behavioral recording is one of the strengths of EEG recording compared to other imaging modalities. Multimodal data review and processing tools will be incorporated into EEGLAB, to further support the development of tools for processing mobile brain imaging data. We will develop a framework for source connectivity analysis using (1) a hierarchical Bayesian framework for clustering effective source processes identified by independent component analysis on multiple measures across subjects and studies and (2) region of interest (ROI) dynamics estimation by beamforming. We will further revise the EEGLAB architecture to use a file and metadata organization compatible with the Brain Imaging Data Structure (BIDS) specifications. These tools will integrate the Hierarchical Event Descriptor (HED) event annotation system to enable innovative meta-analyses across data from multiple studies. These continuing developments will further the use of non-invasive and (as per clinical need) invasive human electrophysiology for 3-D functional cortical brain imaging, thereby accelerating progress in noninvasive basic and clinical human brain research using highly time- and space-resolved measures of brain electrophysiological dynamics.
脑电图(EEG)是第一种功能脑活动成像方式,它有几个天然的优势

项目成果

期刊论文数量(77)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of forward model errors on EEG source localization.
  • DOI:
    10.1007/s10548-012-0274-6
  • 发表时间:
    2013-07
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Acar, Zeynep Akalin;Makeig, Scott
  • 通讯作者:
    Makeig, Scott
Linking brain, mind and behavior.
  • DOI:
    10.1016/j.ijpsycho.2008.11.008
  • 发表时间:
    2009-08
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Makeig, Scott;Gramann, Klaus;Jung, Tzyy-Ping;Sejnowski, Terrence J.;Poizner, Howard
  • 通讯作者:
    Poizner, Howard
Hierarchical Event Descriptors (HED): Semi-Structured Tagging for Real-World Events in Large-Scale EEG.
  • DOI:
    10.3389/fninf.2016.00042
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Bigdely-Shamlo N;Cockfield J;Makeig S;Rognon T;La Valle C;Miyakoshi M;Robbins KA
  • 通讯作者:
    Robbins KA
Measure projection analysis: a probabilistic approach to EEG source comparison and multi-subject inference.
  • DOI:
    10.1016/j.neuroimage.2013.01.040
  • 发表时间:
    2013-05-15
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Bigdely-Shamlo, Nima;Mullen, Tim;Kreutz-Delgado, Kenneth;Makeig, Scott
  • 通讯作者:
    Makeig, Scott
EEG is better left alone.
  • DOI:
    10.1038/s41598-023-27528-0
  • 发表时间:
    2023-02-09
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arnaud Delorme其他文献

Arnaud Delorme的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arnaud Delorme', 18)}}的其他基金

BRAIN Initiative: Hierarchical Event Descriptors (HED): a system to characterize events in neurobehavioral data
BRAIN Initiative:分层事件描述符 (HED):表征神经行为数据事件的系统
  • 批准号:
    10480619
  • 财政年份:
    2022
  • 资助金额:
    $ 65.18万
  • 项目类别:
BRAIN Initiative: Assessing development of event-related cortical network dynamics
BRAIN Initiative:评估事件相关皮层网络动态的发展
  • 批准号:
    10190670
  • 财政年份:
    2021
  • 资助金额:
    $ 65.18万
  • 项目类别:
BRAIN INITIATIVE RESOURCE: DEVELOPMENT OF A HUMAN NEUROELECTROMAGNETIC DATA ARCHIVE AND TOOLS RESOURCE (NEMAR)
大脑倡议资源:人类神经电磁数据档案和工具资源的开发 (NEMAR)
  • 批准号:
    10475072
  • 财政年份:
    2019
  • 资助金额:
    $ 65.18万
  • 项目类别:
BRAIN INITIATIVE RESOURCE: DEVELOPMENT OF A HUMAN NEUROELECTROMAGNETIC DATA ARCHIVE AND TOOLS RESOURCE (NEMAR)
大脑倡议资源:人类神经电磁数据档案和工具资源的开发 (NEMAR)
  • 批准号:
    10687858
  • 财政年份:
    2019
  • 资助金额:
    $ 65.18万
  • 项目类别:
BRAIN INITIATIVE RESOURCE: DEVELOPMENT OF A HUMAN NEUROELECTROMAGNETIC DATA ARCHIVE AND TOOLS RESOURCE (NEMAR)
大脑倡议资源:人类神经电磁数据档案和工具资源的开发 (NEMAR)
  • 批准号:
    10228674
  • 财政年份:
    2019
  • 资助金额:
    $ 65.18万
  • 项目类别:
BRAIN INITIATIVE RESOURCE: DEVELOPMENT OF A HUMAN NEUROELECTROMAGNETIC DATA ARCHIVE AND TOOLS RESOURCE (NEMAR)
大脑倡议资源:人类神经电磁数据档案和工具资源的开发 (NEMAR)
  • 批准号:
    9795341
  • 财政年份:
    2019
  • 资助金额:
    $ 65.18万
  • 项目类别:
The Open EEGLAB Portal Project
开放 EEGLAB 门户项目
  • 批准号:
    9982308
  • 财政年份:
    2017
  • 资助金额:
    $ 65.18万
  • 项目类别:
The Open EEGLAB Portal Project
开放 EEGLAB 门户项目
  • 批准号:
    9384412
  • 财政年份:
    2017
  • 资助金额:
    $ 65.18万
  • 项目类别:
EEGLAB: Software for Analysis of Human Brain Dynamics
EEGLAB:人脑动力学分析软件
  • 批准号:
    10452690
  • 财政年份:
    2004
  • 资助金额:
    $ 65.18万
  • 项目类别:
EEGLAB: Software for Analysis of Human Brain Dynamics
EEGLAB:人脑动力学分析软件
  • 批准号:
    10200896
  • 财政年份:
    2004
  • 资助金额:
    $ 65.18万
  • 项目类别:

相似海外基金

SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
  • 批准号:
    2400967
  • 财政年份:
    2024
  • 资助金额:
    $ 65.18万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 65.18万
  • 项目类别:
    Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
  • 批准号:
    NE/Y000080/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.18万
  • 项目类别:
    Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
  • 批准号:
    10112700
  • 财政年份:
    2024
  • 资助金额:
    $ 65.18万
  • 项目类别:
    Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 65.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 65.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332916
  • 财政年份:
    2024
  • 资助金额:
    $ 65.18万
  • 项目类别:
    Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332917
  • 财政年份:
    2024
  • 资助金额:
    $ 65.18万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 65.18万
  • 项目类别:
    Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
  • 批准号:
    2307983
  • 财政年份:
    2023
  • 资助金额:
    $ 65.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了