A web-based platform for robust single-cell analysis, bulk data deconvolution and system-level analysis
基于网络的平台,用于强大的单细胞分析、批量数据反卷积和系统级分析
基本信息
- 批准号:10766073
- 负责人:
- 金额:$ 87.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcademiaAreaAtlasesAutomobile DrivingBioinformaticsBiologicalBiological MonitoringBiological PhenomenaBiomedical ResearchCell ExtractsCellsCharacteristicsComplexComputer softwareComputing MethodologiesCore FacilityDataData AnalysesData SetDevelopmentDiagnosticFeedbackFlow CytometryGene ExpressionGenesGoalsHumanImmunologyIndividualIndustryKnock-outKnowledgeLifeMeasurementMeasuresMethodologyMethodsMissionMusicNeurobiologyOrganPathway AnalysisPathway interactionsPerformancePharmacologic SubstancePhasePhenotypePrincipal InvestigatorResearch PersonnelResolutionSamplingScientistSystemTechniquesTechnologyThe Cancer Genome AtlasTimeTissuesTranslatingWhole OrganismWorkanalysis pipelineanticancer researchbasebiological systemscell typecellular developmentcommercializationcomparativecostdeep learningdesigndrug discoveryexperienceexperimental studygenome-widegradient boostinghigh dimensionalitylearning algorithmphenotypic datarandom forestrepositorysingle cell analysissingle cell sequencingsingle cell technologysingle-cell RNA sequencingsoftware developmenttooltranscriptometranscriptome sequencingtransfer learningunsupervised learningusabilityuser friendly softwareweb platform
项目摘要
PROJECT SUMMARY
Together with the ability to measure genome-wide expression of millions of individual cells, single-cell
technologies have also brought the challenge of translating such data into a better understanding of the
underlying biological phenomena. Existing computational methods and software for single-cell data analysis
have critical limitations related to scalability, accuracy, usability, and interpretation capabilities. The main goal of
this project is to pioneer a new platform for the analysis of single-cell data that is capable of: i) accurately
identifying cell types and their composition in complex tissues, ii) inferring cell developmental stages and pseudo-
time trajectories, and iii) identifying cell-type-specific pathways and putative mechanisms in a phenotype
comparison. The proposed platform will also be able to deconvolve bulk expression data to identify the cell type
composition of each bulk sample. The significance of the proposed work lies in its potential to provide new
methodologies for single-cell data analysis that far exceed the performance of current state-of-the-art techniques.
The accurate deconvolution will also allow researchers to extract more information from the vast repositories of
existing bulk data, including GDC/TCGA, NCBI SRA, GEO, and ArrayExpress, which are currently containing
data from bulk experiments that collectively cost over a billion dollars. The hypothesis driving this work is that
single-cell data analysis and cellular deconvolution of bulk data can greatly benefit from: i) the systems-level
knowledge that holds key characteristics for cellular developments, and ii) the valuable information available in
validated cell types and reference single-cell datasets available in single-cell atlases. Indeed, our preliminary
work shows that single-cell data analysis and cellular deconvolution can achieve an outstanding accuracy of
approximately 90—100% if we properly utilize reference single-cell datasets and pathway knowledge. The
proposed platform will be extensively validated by comparing its capabilities against the state-of-the-art software
in both single-cell data analysis (cell type identification, developmental states and time-trajectory inference,
systems-level analysis) and cellular deconvolution of bulk expression data. This will be done using both 663
datasets representing 279 cell types and 116 human organ parts (including bulk data, single-cell data, and
matched cell flow cytometry). The pathway analysis and mechanisms inference capabilities will be further
validated using real knock-out datasets (in which the true cause of the phenotype is known). The company,
Advaita, has a strong IP portfolio, an experienced team, and a proven track record in this area, having developed
and commercialized similar analysis platforms. Advaita's existing products are currently used by top principal
investigators, core facilities, and pharmaceutical companies around the world.
项目总结
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A novel approach for predicting upstream regulators (PURE) that affect gene expression.
- DOI:10.1038/s41598-023-41374-0
- 发表时间:2023-10-30
- 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cristiana Iosef其他文献
Cristiana Iosef的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Conference: Rethinking how language background is described in academia and beyond
会议:重新思考学术界及其他领域如何描述语言背景
- 批准号:
2335912 - 财政年份:2024
- 资助金额:
$ 87.8万 - 项目类别:
Standard Grant
ADVANCE Catalyst: Virtual Observatory of Culture for Equity in Academia at the University of Puerto Rico Rio Piedras (VoCEA)
ADVANCE Catalyst:波多黎各 Rio Piedras 大学学术界平等文化虚拟观察站 (VoCEA)
- 批准号:
2214418 - 财政年份:2023
- 资助金额:
$ 87.8万 - 项目类别:
Standard Grant
Comprehensive development strategy of modality-specific "intellectual property" and "cultivation" with an eye on "pharmaceutical affairs" in academia drug discovery
学术界新药研发着眼“药事”的模式“知识产权”与“培育”综合发展策略
- 批准号:
23K02551 - 财政年份:2023
- 资助金额:
$ 87.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accelerating Research Advancement for Investigators Underrepresented in Academia
加速学术界代表性不足的研究人员的研究进展
- 批准号:
10746315 - 财政年份:2023
- 资助金额:
$ 87.8万 - 项目类别:
Planning: HBCU-UP: Strengthening Data Science Research Capacity and Education Programs through Academia-Industry Partnership
规划:HBCU-UP:通过学术界与工业界合作加强数据科学研究能力和教育计划
- 批准号:
2332161 - 财政年份:2023
- 资助金额:
$ 87.8万 - 项目类别:
Standard Grant
From Academia to Business: Development of Novel Therapeutics Against HPV-Associated Cancer
从学术界到商界:针对 HPV 相关癌症的新型疗法的开发
- 批准号:
10813323 - 财政年份:2023
- 资助金额:
$ 87.8万 - 项目类别:
Academics4Rail: Building a Community of Railway Scientific Researchers and Academia for ERJU and Enabling a Network of PhDs (Academia Teaming with Industry)
Academys4Rail:为二院建立铁路科研人员和学术界社区并启用博士网络(学术界与工业界合作)
- 批准号:
10102850 - 财政年份:2023
- 资助金额:
$ 87.8万 - 项目类别:
EU-Funded
Academics4Rail: Building a community of railway scientific researchers and academia for ERJU and enabling a network of PhDs (academia teaming with industry)
Academys4Rail:为ERJU建立铁路科研人员和学术界社区并建立博士网络(学术界与工业界合作)
- 批准号:
10087488 - 财政年份:2023
- 资助金额:
$ 87.8万 - 项目类别:
EU-Funded
Exploring the overall picture of industry-academia-government collaboration: A spectrum of knowledge transfer through formal and informal channels
探索产学官合作的整体图景:通过正式和非正式渠道进行的一系列知识转移
- 批准号:
22K01692 - 财政年份:2022
- 资助金额:
$ 87.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fostering Ethical Neurotechnology Academia-Industry Partnerships: A Stakeholder Engagement and Toolkit Development Project
促进道德神经技术学术界与工业界的伙伴关系:利益相关者参与和工具包开发项目
- 批准号:
10655632 - 财政年份:2022
- 资助金额:
$ 87.8万 - 项目类别:














{{item.name}}会员




