A web-based platform for robust single-cell analysis, bulk data deconvolution and system-level analysis
基于网络的平台,用于强大的单细胞分析、批量数据反卷积和系统级分析
基本信息
- 批准号:10766073
- 负责人:
- 金额:$ 87.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcademiaAreaAtlasesAutomobile DrivingBioinformaticsBiologicalBiological MonitoringBiological PhenomenaBiomedical ResearchCell ExtractsCellsCharacteristicsComplexComputer softwareComputing MethodologiesCore FacilityDataData AnalysesData SetDevelopmentDiagnosticFeedbackFlow CytometryGene ExpressionGenesGoalsHumanImmunologyIndividualIndustryKnock-outKnowledgeLifeMeasurementMeasuresMethodologyMethodsMissionMusicNeurobiologyOrganPathway AnalysisPathway interactionsPerformancePharmacologic SubstancePhasePhenotypePrincipal InvestigatorResearch PersonnelResolutionSamplingScientistSystemTechniquesTechnologyThe Cancer Genome AtlasTimeTissuesTranslatingWhole OrganismWorkanalysis pipelineanticancer researchbasebiological systemscell typecellular developmentcommercializationcomparativecostdeep learningdesigndrug discoveryexperienceexperimental studygenome-widegradient boostinghigh dimensionalitylearning algorithmphenotypic datarandom forestrepositorysingle cell analysissingle cell sequencingsingle cell technologysingle-cell RNA sequencingsoftware developmenttooltranscriptometranscriptome sequencingtransfer learningunsupervised learningusabilityuser friendly softwareweb platform
项目摘要
PROJECT SUMMARY
Together with the ability to measure genome-wide expression of millions of individual cells, single-cell
technologies have also brought the challenge of translating such data into a better understanding of the
underlying biological phenomena. Existing computational methods and software for single-cell data analysis
have critical limitations related to scalability, accuracy, usability, and interpretation capabilities. The main goal of
this project is to pioneer a new platform for the analysis of single-cell data that is capable of: i) accurately
identifying cell types and their composition in complex tissues, ii) inferring cell developmental stages and pseudo-
time trajectories, and iii) identifying cell-type-specific pathways and putative mechanisms in a phenotype
comparison. The proposed platform will also be able to deconvolve bulk expression data to identify the cell type
composition of each bulk sample. The significance of the proposed work lies in its potential to provide new
methodologies for single-cell data analysis that far exceed the performance of current state-of-the-art techniques.
The accurate deconvolution will also allow researchers to extract more information from the vast repositories of
existing bulk data, including GDC/TCGA, NCBI SRA, GEO, and ArrayExpress, which are currently containing
data from bulk experiments that collectively cost over a billion dollars. The hypothesis driving this work is that
single-cell data analysis and cellular deconvolution of bulk data can greatly benefit from: i) the systems-level
knowledge that holds key characteristics for cellular developments, and ii) the valuable information available in
validated cell types and reference single-cell datasets available in single-cell atlases. Indeed, our preliminary
work shows that single-cell data analysis and cellular deconvolution can achieve an outstanding accuracy of
approximately 90—100% if we properly utilize reference single-cell datasets and pathway knowledge. The
proposed platform will be extensively validated by comparing its capabilities against the state-of-the-art software
in both single-cell data analysis (cell type identification, developmental states and time-trajectory inference,
systems-level analysis) and cellular deconvolution of bulk expression data. This will be done using both 663
datasets representing 279 cell types and 116 human organ parts (including bulk data, single-cell data, and
matched cell flow cytometry). The pathway analysis and mechanisms inference capabilities will be further
validated using real knock-out datasets (in which the true cause of the phenotype is known). The company,
Advaita, has a strong IP portfolio, an experienced team, and a proven track record in this area, having developed
and commercialized similar analysis platforms. Advaita's existing products are currently used by top principal
investigators, core facilities, and pharmaceutical companies around the world.
项目摘要
与测量数百万个个体细胞的全基因组表达的能力一起,
技术也带来了将这些数据转化为更好地了解
潜在的生物现象。用于单细胞数据分析的现有计算方法和软件
具有与可扩展性、准确性、可用性和解释能力相关的关键限制。的主要目标
该项目旨在开创一种新的单细胞数据分析平台,能够:i)准确
鉴定复杂组织中的细胞类型和它们的组成,ii)推断细胞发育阶段和假-
时间轨迹,和iii)鉴定表型中的细胞类型特异性途径和推定机制
对比拟议的平台还将能够对批量表达数据进行去卷积,以识别细胞类型
每个散装样品的组成。拟议工作的重要性在于它有可能提供新的
本发明提供了用于单细胞数据分析的方法,其远远超过当前最先进技术的性能。
精确的解卷积还将使研究人员能够从大量的信息库中提取更多的信息,
现有的批量数据,包括GDC/TCGA、NCBI SRA、GEO和ArrayExpress,目前包含
这些数据来自于大量的实验,这些实验总共花费了超过10亿美元。推动这项工作的假设是,
单细胞数据分析和批量数据的细胞去卷积可以极大地受益于:i)系统级
拥有细胞发展的关键特征的知识,以及ii)
经验证的细胞类型和参考单细胞图谱中可用的单细胞数据集。事实上,我们的初步
工作表明,单细胞数据分析和细胞反卷积可以实现出色的精度,
如果我们适当地利用参考单细胞数据集和途径知识,大约90-100%。的
将通过与最先进的软件进行比较,对拟议的平台进行广泛验证
在单细胞数据分析(细胞类型识别、发育状态和时间轨迹推断,
系统水平分析)和批量表达数据的细胞去卷积。这将使用663
代表279种细胞类型和116个人体器官部分的数据集(包括批量数据、单细胞数据和
匹配的细胞流式细胞术)。进一步提高了路径分析和机理推断能力
使用真实的敲除数据集(其中表型的真正原因是已知的)进行验证。公司,
Advaita拥有强大的知识产权组合,经验丰富的团队,以及在该领域的良好记录,
并将类似的分析平台商业化。Advaita的现有产品目前由顶级校长使用
调查人员、核心设施和全球制药公司。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A novel approach for predicting upstream regulators (PURE) that affect gene expression.
- DOI:10.1038/s41598-023-41374-0
- 发表时间:2023-10-30
- 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cristiana Iosef其他文献
Cristiana Iosef的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Conference: Rethinking how language background is described in academia and beyond
会议:重新思考学术界及其他领域如何描述语言背景
- 批准号:
2335912 - 财政年份:2024
- 资助金额:
$ 87.8万 - 项目类别:
Standard Grant
ADVANCE Catalyst: Virtual Observatory of Culture for Equity in Academia at the University of Puerto Rico Rio Piedras (VoCEA)
ADVANCE Catalyst:波多黎各 Rio Piedras 大学学术界平等文化虚拟观察站 (VoCEA)
- 批准号:
2214418 - 财政年份:2023
- 资助金额:
$ 87.8万 - 项目类别:
Standard Grant
Comprehensive development strategy of modality-specific "intellectual property" and "cultivation" with an eye on "pharmaceutical affairs" in academia drug discovery
学术界新药研发着眼“药事”的模式“知识产权”与“培育”综合发展策略
- 批准号:
23K02551 - 财政年份:2023
- 资助金额:
$ 87.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accelerating Research Advancement for Investigators Underrepresented in Academia
加速学术界代表性不足的研究人员的研究进展
- 批准号:
10746315 - 财政年份:2023
- 资助金额:
$ 87.8万 - 项目类别:
Planning: HBCU-UP: Strengthening Data Science Research Capacity and Education Programs through Academia-Industry Partnership
规划:HBCU-UP:通过学术界与工业界合作加强数据科学研究能力和教育计划
- 批准号:
2332161 - 财政年份:2023
- 资助金额:
$ 87.8万 - 项目类别:
Standard Grant
From Academia to Business: Development of Novel Therapeutics Against HPV-Associated Cancer
从学术界到商界:针对 HPV 相关癌症的新型疗法的开发
- 批准号:
10813323 - 财政年份:2023
- 资助金额:
$ 87.8万 - 项目类别:
Academics4Rail: Building a community of railway scientific researchers and academia for ERJU and enabling a network of PhDs (academia teaming with industry)
Academys4Rail:为ERJU建立铁路科研人员和学术界社区并建立博士网络(学术界与工业界合作)
- 批准号:
10087488 - 财政年份:2023
- 资助金额:
$ 87.8万 - 项目类别:
EU-Funded
Academics4Rail: Building a Community of Railway Scientific Researchers and Academia for ERJU and Enabling a Network of PhDs (Academia Teaming with Industry)
Academys4Rail:为二院建立铁路科研人员和学术界社区并启用博士网络(学术界与工业界合作)
- 批准号:
10102850 - 财政年份:2023
- 资助金额:
$ 87.8万 - 项目类别:
EU-Funded
Exploring the overall picture of industry-academia-government collaboration: A spectrum of knowledge transfer through formal and informal channels
探索产学官合作的整体图景:通过正式和非正式渠道进行的一系列知识转移
- 批准号:
22K01692 - 财政年份:2022
- 资助金额:
$ 87.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fostering Ethical Neurotechnology Academia-Industry Partnerships: A Stakeholder Engagement and Toolkit Development Project
促进道德神经技术学术界与工业界的伙伴关系:利益相关者参与和工具包开发项目
- 批准号:
10655632 - 财政年份:2022
- 资助金额:
$ 87.8万 - 项目类别:














{{item.name}}会员




