A web-based platform for robust single-cell analysis, bulk data deconvolution and system-level analysis
基于网络的平台,用于强大的单细胞分析、批量数据反卷积和系统级分析
基本信息
- 批准号:10766073
- 负责人:
- 金额:$ 87.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcademiaAreaAtlasesAutomobile DrivingBioinformaticsBiologicalBiological MonitoringBiological PhenomenaBiomedical ResearchCell ExtractsCellsCharacteristicsComplexComputer softwareComputing MethodologiesCore FacilityDataData AnalysesData SetDevelopmentDiagnosticFeedbackFlow CytometryGene ExpressionGenesGoalsHumanImmunologyIndividualIndustryKnock-outKnowledgeLifeMeasurementMeasuresMethodologyMethodsMissionMusicNeurobiologyOrganPathway AnalysisPathway interactionsPerformancePharmacologic SubstancePhasePhenotypePrincipal InvestigatorResearch PersonnelResolutionSamplingScientistSystemTechniquesTechnologyThe Cancer Genome AtlasTimeTissuesTranslatingWhole OrganismWorkanalysis pipelineanticancer researchbasebiological systemscell typecellular developmentcommercializationcomparativecostdeep learningdesigndrug discoveryexperienceexperimental studygenome-widegradient boostinghigh dimensionalitylearning algorithmphenotypic datarandom forestrepositorysingle cell analysissingle cell sequencingsingle cell technologysingle-cell RNA sequencingsoftware developmenttooltranscriptometranscriptome sequencingtransfer learningunsupervised learningusabilityuser friendly softwareweb platform
项目摘要
PROJECT SUMMARY
Together with the ability to measure genome-wide expression of millions of individual cells, single-cell
technologies have also brought the challenge of translating such data into a better understanding of the
underlying biological phenomena. Existing computational methods and software for single-cell data analysis
have critical limitations related to scalability, accuracy, usability, and interpretation capabilities. The main goal of
this project is to pioneer a new platform for the analysis of single-cell data that is capable of: i) accurately
identifying cell types and their composition in complex tissues, ii) inferring cell developmental stages and pseudo-
time trajectories, and iii) identifying cell-type-specific pathways and putative mechanisms in a phenotype
comparison. The proposed platform will also be able to deconvolve bulk expression data to identify the cell type
composition of each bulk sample. The significance of the proposed work lies in its potential to provide new
methodologies for single-cell data analysis that far exceed the performance of current state-of-the-art techniques.
The accurate deconvolution will also allow researchers to extract more information from the vast repositories of
existing bulk data, including GDC/TCGA, NCBI SRA, GEO, and ArrayExpress, which are currently containing
data from bulk experiments that collectively cost over a billion dollars. The hypothesis driving this work is that
single-cell data analysis and cellular deconvolution of bulk data can greatly benefit from: i) the systems-level
knowledge that holds key characteristics for cellular developments, and ii) the valuable information available in
validated cell types and reference single-cell datasets available in single-cell atlases. Indeed, our preliminary
work shows that single-cell data analysis and cellular deconvolution can achieve an outstanding accuracy of
approximately 90—100% if we properly utilize reference single-cell datasets and pathway knowledge. The
proposed platform will be extensively validated by comparing its capabilities against the state-of-the-art software
in both single-cell data analysis (cell type identification, developmental states and time-trajectory inference,
systems-level analysis) and cellular deconvolution of bulk expression data. This will be done using both 663
datasets representing 279 cell types and 116 human organ parts (including bulk data, single-cell data, and
matched cell flow cytometry). The pathway analysis and mechanisms inference capabilities will be further
validated using real knock-out datasets (in which the true cause of the phenotype is known). The company,
Advaita, has a strong IP portfolio, an experienced team, and a proven track record in this area, having developed
and commercialized similar analysis platforms. Advaita's existing products are currently used by top principal
investigators, core facilities, and pharmaceutical companies around the world.
项目概要
连同测量数百万个单个细胞的全基因组表达的能力,单细胞
技术也带来了将这些数据转化为更好地理解的挑战
潜在的生物现象。现有的单细胞数据分析计算方法和软件
在可扩展性、准确性、可用性和解释能力方面存在严重限制。主要目标
该项目旨在开创一个用于分析单细胞数据的新平台,该平台能够:i)准确地
识别复杂组织中的细胞类型及其组成,ii) 推断细胞发育阶段和伪细胞
时间轨迹,以及 iii) 识别表型中的细胞类型特异性途径和推定机制
比较。拟议的平台还能够对批量表达数据进行反卷积以识别细胞类型
每个批量样品的成分。拟议工作的意义在于它有可能提供新的
单细胞数据分析方法远远超出了当前最先进技术的性能。
准确的反卷积还将使研究人员能够从庞大的数据库中提取更多信息。
现有的批量数据,包括 GDC/TCGA、NCBI SRA、GEO 和 ArrayExpress,目前包含
来自总共花费超过十亿美元的批量实验的数据。推动这项工作的假设是
单细胞数据分析和批量数据的细胞反卷积可以极大地受益于:i) 系统级
掌握细胞发育关键特征的知识,以及 ii) 中可用的有价值的信息
单细胞图集中提供经过验证的细胞类型和参考单细胞数据集。确实,我们的初步
工作表明单细胞数据分析和细胞反卷积可以实现出色的精度
如果我们正确利用参考单细胞数据集和通路知识,大约可以达到 90-100%。这
所提出的平台将通过将其功能与最先进的软件进行比较来得到广泛验证
在单细胞数据分析(细胞类型识别、发育状态和时间轨迹推断)中,
系统级分析)和批量表达数据的细胞反卷积。第663章
代表 279 种细胞类型和 116 个人体器官部分的数据集(包括批量数据、单细胞数据和
匹配细胞流式细胞术)。路径分析和机制推理能力将进一步提升
使用真实的敲除数据集进行验证(其中表型的真正原因已知)。公司,
Advaita 拥有强大的知识产权组合、经验丰富的团队以及该领域良好的业绩记录,
并将类似的分析平台商业化。 Advaita现有产品目前已被顶级校长使用
世界各地的研究人员、核心设施和制药公司。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A novel approach for predicting upstream regulators (PURE) that affect gene expression.
- DOI:10.1038/s41598-023-41374-0
- 发表时间:2023-10-30
- 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cristiana Iosef其他文献
Cristiana Iosef的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Conference: Rethinking how language background is described in academia and beyond
会议:重新思考学术界及其他领域如何描述语言背景
- 批准号:
2335912 - 财政年份:2024
- 资助金额:
$ 87.8万 - 项目类别:
Standard Grant
ADVANCE Catalyst: Virtual Observatory of Culture for Equity in Academia at the University of Puerto Rico Rio Piedras (VoCEA)
ADVANCE Catalyst:波多黎各 Rio Piedras 大学学术界平等文化虚拟观察站 (VoCEA)
- 批准号:
2214418 - 财政年份:2023
- 资助金额:
$ 87.8万 - 项目类别:
Standard Grant
Comprehensive development strategy of modality-specific "intellectual property" and "cultivation" with an eye on "pharmaceutical affairs" in academia drug discovery
学术界新药研发着眼“药事”的模式“知识产权”与“培育”综合发展策略
- 批准号:
23K02551 - 财政年份:2023
- 资助金额:
$ 87.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accelerating Research Advancement for Investigators Underrepresented in Academia
加速学术界代表性不足的研究人员的研究进展
- 批准号:
10746315 - 财政年份:2023
- 资助金额:
$ 87.8万 - 项目类别:
Planning: HBCU-UP: Strengthening Data Science Research Capacity and Education Programs through Academia-Industry Partnership
规划:HBCU-UP:通过学术界与工业界合作加强数据科学研究能力和教育计划
- 批准号:
2332161 - 财政年份:2023
- 资助金额:
$ 87.8万 - 项目类别:
Standard Grant
From Academia to Business: Development of Novel Therapeutics Against HPV-Associated Cancer
从学术界到商界:针对 HPV 相关癌症的新型疗法的开发
- 批准号:
10813323 - 财政年份:2023
- 资助金额:
$ 87.8万 - 项目类别:
Academics4Rail: Building a Community of Railway Scientific Researchers and Academia for ERJU and Enabling a Network of PhDs (Academia Teaming with Industry)
Academys4Rail:为二院建立铁路科研人员和学术界社区并启用博士网络(学术界与工业界合作)
- 批准号:
10102850 - 财政年份:2023
- 资助金额:
$ 87.8万 - 项目类别:
EU-Funded
Academics4Rail: Building a community of railway scientific researchers and academia for ERJU and enabling a network of PhDs (academia teaming with industry)
Academys4Rail:为ERJU建立铁路科研人员和学术界社区并建立博士网络(学术界与工业界合作)
- 批准号:
10087488 - 财政年份:2023
- 资助金额:
$ 87.8万 - 项目类别:
EU-Funded
Exploring the overall picture of industry-academia-government collaboration: A spectrum of knowledge transfer through formal and informal channels
探索产学官合作的整体图景:通过正式和非正式渠道进行的一系列知识转移
- 批准号:
22K01692 - 财政年份:2022
- 资助金额:
$ 87.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fostering Ethical Neurotechnology Academia-Industry Partnerships: A Stakeholder Engagement and Toolkit Development Project
促进道德神经技术学术界与工业界的伙伴关系:利益相关者参与和工具包开发项目
- 批准号:
10655632 - 财政年份:2022
- 资助金额:
$ 87.8万 - 项目类别:














{{item.name}}会员




