Engineered TCR-Treg Cell Therapies Targeting Type 1 Diabetes Autoantigens
针对 1 型糖尿病自身抗原的工程化 TCR-Treg 细胞疗法
基本信息
- 批准号:10764143
- 负责人:
- 金额:$ 5.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-03 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Adoptive Cell TransfersAllelesAntigensAutoantigensAutoimmune DiseasesAutoimmune ResponsesBeta CellBiotechnologyBlood GlucoseCAR T cell therapyCD8-Positive T-LymphocytesCancer PatientCatalogsCell TherapyCell physiologyCellsChronicClinicalClinical TrialsCytotoxic T-LymphocytesDNA sequencingDevelopmentDiseaseDoctor of PhilosophyEngineeringEnvironmentEpitopesEquityFDA approvedGenesGenomicsGoalsGrantHematologic NeoplasmsHumanImmune responseImmunogenomicsIn VitroIndustryInnovation CorpsInsulinInsulin deficiencyInsulin-Dependent Diabetes MellitusIslets of LangerhansLibrariesMarketingMicrofluidicsPathologyPatientsPeptidesPharmacologic SubstancePhaseReceptor CellRegulatory T-LymphocyteReplacement TherapyReportingSmall Business Innovation Research GrantSolid NeoplasmT-Cell ReceptorT-LymphocyteTechnologyTherapeuticTimeTrainingUnited States National Institutes of HealthWorkautoreactivitycancer cellchimeric antigen receptorclinical developmentdesigneffective therapyefficacy studyexperiencegenetic counselorglucose monitorimmunoregulationin vivomanufacturemembernovel therapeuticspreproinsulinpreventprogramsresponsesafety studysuccesstargeted treatment
项目摘要
Executive Summary of Predicate SBIR Phase I Grant and Team
Project Title: Engineered TCR-Treg Cell Therapies Targeting Type 1 Diabetes Autoantigens
Organization: GigaMune Inc.
PI: Matthew J Spindler, Ph.D.
Engineered adoptive cell therapies including chimeric antigen receptor (CAR-T) and T cell receptor (TCR-T) cell
therapies have shown strong clinical responses in cancer patients with five FDA approved CAR-T cell therapies
for hematological cancers and numerous TCR-T cell clinical trials ongoing for the treatment of solid tumors.
These new drugs have all leveraged engineered cytotoxic T cells and are designed to directly kill cancer cells.
In contrast to cytotoxic T cells, Tregs function to locally suppress immune responses through antigen-specific
activity. TCR engineered regulatory T cells (TCR-Tregs) could be used for the treatment of patients with
autoimmune disorders, not for killing target cells but rather for preventing cells from being killed. However, in
order to develop engineered TCR-Treg cell therapies, there is a critical need in identifying autoantigen reactive
TCRs to specifically direct Treg activity into pancreatic islets where they can locally suppress the autoreactive
cytotoxic T cells causing disease pathology.
Type 1 diabetes (T1D) autoantigens, including preproinsulin, IA-2, and GAD65, are ideal TCR-Treg cell targets
as they are specifically expressed in pancreatic islets and beta (b)-cells. These autoantigens are commonly
targeted by CD4 and CD8 T cells in T1D patients with peptide epitopes presented across many HLA alleles.
Importantly, recent studies have demonstrated that TCR clonotypes isolated from CD8+ T cells can redirect Treg
suppressive activity to class I HLA presented peptides. This suggests that engineered TCR-Tregs targeting T1D
autoantigens could suppress autoreactive cytotoxic T cells within the pancreatic islets. Therefore, a catalog of
TCR-Treg cell therapies targeting T1D autoantigens across different HLA alleles would provide a broadly
effective treatment for T1D patients.
The Specific Aim of the R43AI170407 Phase I SBIR project is to develop a catalog of natural human TCRs that
target T1D autoantigens for use in TCR-engineered Treg cell therapies. GigaMune's unique technology uses
microfluidics, genomics, and mammalian display to generate millions-diverse, natively paired TCRab repertoire
libraries. The TCRab libraries are immortal, enabling repeated experimentation with a panel of antigens. This
will expedite discovery of rare anti-T1D TCRs. The project recently started in late 2022 and we have no technical
progress to report. After completing this Phase I SBIR project, GigaMune will further develop promising TCRs
as TCR-Treg cell therapies, through in vivo efficacy studies, in vitro safety studies, and manufacturing
development.
The R43AI170407 I-Corps Supplement is led by GigaMune co-founder Dr. Matthew J. Spindler, an expert in
immunogenomics and inventor of the GigaMune technology and supported by GigaMune CEO, serial
entrepreneur, and GigaMune co-founder David Johnson. The industry expert is Jennifer Keller, a trained genetic
counselor and marketing manager. Ms. Keller has a broad understanding of potential disease applications, as
well as therapeutic market segments. All three team members have previously worked together on NIH I-Corps
projects at GigaGen, which culminated in discovery of a key pharmaceutical development partner (Grifols) which
bought GigaGen for $143 million in 2021. The products identified during the course of the prior NIH I-Corps
projects are currently under clinical development at Grifols.
All three I-Corps team members, having prior experience with the program, understand the significant time
requirements of the program and are committed to success. Like all early stage biotechnology companies,
GigaMune is facing an extremely challenging fundraising environment. As such our primary goal in this I-Corps
Supplement is to understand the needs of pharmaceutical development partners, so we can partner early,
without further equity financing.
谓词SBIR第一阶段拨款和团队的执行摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew James Spindler其他文献
Matthew James Spindler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew James Spindler', 18)}}的其他基金
Engineered TCR-Treg Cell Therapies Targeting Type 1 Diabetes Autoantigens
针对 1 型糖尿病自身抗原的工程化 TCR-Treg 细胞疗法
- 批准号:
10545634 - 财政年份:2022
- 资助金额:
$ 5.5万 - 项目类别:
Engineered TCR-T Cell Therapy Targeting Driver Mutations in NSCLC
针对 NSCLC 驱动基因突变的工程化 TCR-T 细胞疗法
- 批准号:
10258346 - 财政年份:2021
- 资助金额:
$ 5.5万 - 项目类别:
Engineered TCR-T Cell Therapies Targeting Shared Tumor Associated Antigens
针对共享肿瘤相关抗原的工程 TCR-T 细胞疗法
- 批准号:
10324506 - 财政年份:2021
- 资助金额:
$ 5.5万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 5.5万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 5.5万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 5.5万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 5.5万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 5.5万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 5.5万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 5.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 5.5万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 5.5万 - 项目类别: