Integrative single-cell spatial transcriptomic, anatomical, and functional profiling of brain-wide ensembles engaged by opioid relapse
与阿片类药物复发有关的全脑整体的综合单细胞空间转录组、解剖学和功能分析
基本信息
- 批准号:10772455
- 负责人:
- 金额:$ 80.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-30 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAnatomyAtlasesBar CodesBehaviorBehavioralBiological AssayBrainBrain MappingBrain regionCellsClassificationClinicalCommunitiesCouplingCuesDataData SetDrug ExposureElectrophysiology (science)EmotionalEuphoriaFOS geneFemaleFentanylFutureGene ExpressionGene Expression ProfileGenesGeneticGenetic TranscriptionGoalsHeroinImageImmediate-Early GenesImplantIndividualIndividual DifferencesInfusion proceduresIntravenousMachine LearningMapsMethodologyMethodsModelingMolecularMorphineMusNeuronsNeurosciencesOpioidOralOral CharactersPharmaceutical PreparationsPhenotypePopulationProcessRelapseReportingResolutionRiskRouteSelf AdministrationSliceSpecificityTechnologyTimeUnited StatesViralVulnerable PopulationsWithdrawalbrain cellbrain tissuebrain volumecell typecombatdifferential expressiondrug seeking behaviorfentanyl abusefentanyl seekingfentanyl self-administrationfentanyl usefunctional adaptationgene conservationin vivoindividual variationinnovationinterestlearned behaviormalemultimodal datamultimodalityneuralneural circuitnovelopen sourceopioid abuseopioid mortalityopioid userecruitrelapse riskresponsespatial integrationsynthetic opioidtechnology platformtranscriptometranscriptomic profilingtranscriptomics
项目摘要
PROJECT SUMMARY
Opioid abuse is devastating communities across the United States and is responsible for untold suffering. The
synthetic opioid fentanyl, whether due to prescription or illicit use, is involved in nearly half of reported opioid-
related deaths. Unlike heroin and morphine, fentanyl is commonly administered through non-intravenous routes,
but we have a limited mechanistic understanding of fentanyl use and abuse vulnerability. A leading hypothesis
for the transition from use to abuse, in vulnerable individuals, is the recruitment of drug-induced gene expression
changes in certain brain circuits and cells following repeated drug exposure. However, identifying such circuit-
and cell-type specific populations, in combination with their underlying genetic and functional adaptations, is
often limited by the resolution, throughput, and data registration of current assays. The overall goal of this project
is to (i) generate machine--guided behavioral characterization of oral and intravenous fentanyl self-administration
and reinstatement in male and female mice that captures individual risk vulnerability, and (ii) perform brain-wide
mapping by integrating new enabling technological platforms including single-cell spatial transcriptomics (Pixel-
seq), whole brain cell type specific circuit connectivity, and functional distributed brain-wide neural activity
recordings (Neuropixel 2.0), recently developed by PIs in our team. To realize the potential for the molecular and
functional brain mapping and data registration, we have three Specific Aims: 1) perform single-cell spatial
transcriptomic profiling, with circuit-specificity, in mice with varying degrees of fentanyl-seeking behavior; 2)
perform single-cell whole-brain activity mapping, with cell-type and circuit-specificity, in mice with varying
degrees of fentanyl-seeking behavior; 3) perform brain-wide distributed large-scale electrophysiological
recordings during oral fentanyl-seeking and integrate spatially resolved transcriptomic data with recording data.
In the first Aim, Pixel-seq will be used to generate cell atlases, analyze drug- and behavior-associated spatially
conserved gene expression, and map neuronal connectivity by coupling with retrograde viral tracing. In the
second Aim, we will perform immediate early gene-based whole-brain activity mapping, contextualized by cell
type-specific afferent connectivity, after fentanyl self-administration and reinstatement. In the third Aim, we will
first perform Neuropixel2.0 electrophysiological recording of the brain-wide distributed regions of interest, and
then integrate and align Neuropixel2.0 and Pixel-seq data in a new assay called NeuroPixel-seq (NP-seq). The
proposed project is innovative as our integrative approaches will, for the first time, generate spatial multimodal
data of unprecedented depth and resolution within the context of opioid relapse risk. It is significant because our
data will provide a much-needed accessible oral fentanyl self-administration model for the neuroscience
community, paired with the first fentanyl cellular-resolution atlas, allowing non-specialized labs an accessible
beachhead for participating in the identification of the mechanistic basis for fentanyl use and relapse in mice.
项目摘要
阿片类药物滥用正在破坏美国各地的社区,并造成了难以言状的痛苦。的
合成阿片类芬太尼,无论是由于处方或非法使用,涉及近一半的报告阿片类药物,
相关死亡。与海洛因和吗啡不同,芬太尼通常通过非静脉途径给药,
但我们对芬太尼的使用和滥用脆弱性的机械理解有限。一个主要的假设
在脆弱的个体中,从使用到滥用的转变是药物诱导的基因表达的招募
在反复接触药物后某些脑回路和细胞的变化。然而,识别这种电路-
和细胞类型特异性群体,结合其潜在的遗传和功能适应,
通常受到当前分析的分辨率、通量和数据配准的限制。本项目的总体目标
是(i)生成口服和静脉内芬太尼自我给药的机器引导的行为表征
和恢复在男性和女性小鼠,捕捉个人的风险脆弱性,和(ii)执行全脑
通过整合新的使能技术平台,包括单细胞空间转录组学(Pixel-
seq)、全脑细胞类型特异性电路连接性和功能性分布的全脑神经活动
记录(Neuropixel 2.0),最近由我们团队中的PI开发。为了实现分子和
功能性脑映射和数据配准,我们有三个具体目标:1)执行单细胞空间
在具有不同程度芬太尼寻求行为的小鼠中,具有回路特异性的转录组学分析; 2)
进行单细胞全脑活动映射,细胞类型和回路特异性,在小鼠中,
芬太尼寻求行为的程度; 3)进行全脑分布的大规模电生理检查
在口服芬太尼寻找过程中的记录,并将空间分辨的转录组数据与记录数据整合。
在第一个目标中,Pixel-seq将用于生成细胞图谱,分析药物和行为相关的空间
保守的基因表达,并通过与逆行病毒追踪偶联来绘制神经元连接。在
第二个目标是,我们将立即进行基于基因的早期全脑活动映射,
芬太尼自我给药和恢复后的类型特异性传入连接。在第三个目标中,我们将
首先对全脑分布的感兴趣区域进行Neuropixel2.0电生理记录,
然后将Neuropixel2.0和Pixel-seq数据整合并对齐到称为NeuroPixel-seq(NP-seq)的新检测中。的
拟议的项目是创新的,因为我们的综合方法将首次产生空间多模态
在类阿片复吸风险背景下,数据的深度和分辨率前所未有。这很重要,因为我们的
数据将为神经科学提供急需的可获得的口服芬太尼自我给药模型
社区,与第一个芬太尼细胞分辨率图谱相结合,使非专业实验室可以访问
滩头阵地参与确定芬太尼使用和复发的机制基础。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sam Golden其他文献
Sam Golden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sam Golden', 18)}}的其他基金
Role of the nucleus accumbens in regulating aggression reward.
伏隔核在调节攻击性奖赏中的作用。
- 批准号:
9035528 - 财政年份:2015
- 资助金额:
$ 80.15万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 80.15万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 80.15万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 80.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 80.15万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 80.15万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 80.15万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 80.15万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 80.15万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 80.15万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 80.15万 - 项目类别:
Research Grant














{{item.name}}会员




