Optogenetic and chemogenetic regulation of uterine vascular function
子宫血管功能的光遗传学和化学遗传学调控
基本信息
- 批准号:10785667
- 负责人:
- 金额:$ 42.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcuteAddressAdverse effectsAffectAgonistAltitudeAnimal GeneticsAnimal ModelAnimalsAreaArteriesBlood VesselsBlood flowBluetoothCardiovascular DiseasesCardiovascular systemCell membraneCervicalChildChronic DiseaseContralateralDevelopmentDrug DesignElderlyEndothelial CellsEndotheliumExposure toFetal GrowthFetal Growth RetardationFetal ReductionFetusFiberFoundationsG alpha q ProteinG-Protein-Coupled ReceptorsGeneticGenetic ModelsGenotypeGoalsGrowthHalorhodopsinsHumanHypertensionHypoxiaImpairmentImplantInvadedKnowledgeLifeLightLongevityMeasuresMicrofluidicsMolecularMorphologyMothersMusMuscarinic Acetylcholine ReceptorMuscarinic M3 ReceptorNeonatal MortalityNitric OxideOpsinOpticsPericytesPhysiologicalPlacentaPopulationPositioning AttributePredispositionPregnancyPregnancy ComplicationsPregnancy OutcomePregnant UterusProliferatingPumpRegulationRelaxationReproducibilityReproductive HealthRiskSignaling ProteinSmooth MuscleSmooth Muscle MyocytesStressTechniquesTestingTherapeuticTimeUterusVagus nerve structureVasodilationWild Type Mousecardiovascular disorder riskdesignexperimental studyfetalfetal bloodflexibilitygenetic technologygenetically modified cellshealthy pregnancyimplantationimprovedin vivoinfant morbidity/mortalityinnovationinternal controlmicrobialmouse modelneonatal deathnovelnovel therapeuticsoptogeneticsperinatal periodpharmacologicpregnantpreventreceptorskull implantstillbirthsubcutaneoustherapeutically effectivetherapy developmenttooltrophoblastvascular bed
项目摘要
PROJECT SUMMARY
Fetal growth restriction (FGR) increases the risk of stillbirth and neonatal death. The adverse effects of being
born FGR extend well beyond the perinatal period, increasing the risk of cardiovascular disease, among others,
in later life. Impaired vascular adaptation to pregnancy is a predominant contributor to FGR. Hypoxic conditions
also alter uteroplacental vascular function, reducing fetal growth, similarly to FGR. To understand the
mechanisms by which an increase in uterine artery (UtA) blood flow can prevent hypoxia-dependent impaired
uterine vasculature and reduced fetal growth, we propose using optogenetics and chemogenetics technology for
manipulating uterine blood flow in live animals. Optogenetics is an innovative technique in which genetically
modified cells express light-activated microbial opsins (e.g., halorhodopsin [NpHR]), which can then be
selectively stimulated by light in vivo. Chemogenetics utilizes modified receptors such as the muscarinic M3
receptor (hM3Dq), which can be selectively activated by specific agonists (e.g., deschloroclozapine [DCZ]). Our
goal is to develop novel and reliable murine models to prevent FGR via endothelium or smooth muscle-specific
mechanisms in the UtA. To address this goal, we propose to conduct two scientific aims. In Aim 1, in mice
expressing NpHR in the smooth muscle, we will address the capacity for light stimulation to vasodilate the UtA
in vivo, increasing UtA blood flow and preventing FGR. Aim 2 will determine the effect of endothelium-dependent
UtA vasodilation via expression of hM3Dq and its selective activation by DCZ locally applied through a
microfluidic channel. Current murine models for increasing UtA blood flow in vivo require pharmacological
activations that are non-tissue specific, and the timing of the activation cannot be controlled. Our optogenetic
and chemogenetic models will provide better control of the degree of blood flow manipulation, enhanced
reproducibility among experiments, improved selectivity of the stimulation, and the opportunity to test the timing
of stimulation. This project will be the first to apply optogenetics and chemogenetics to the vasodilation of UtA in
vivo. Importantly, our proposal can provide the foundation for applying optogenetics and chemogenetics to the
study of other vascular beds in vivo.
项目概要
胎儿生长受限(FGR)会增加死产和新生儿死亡的风险。存在的不利影响
出生的 FGR 远远超出围产期,增加了心血管疾病等疾病的风险,
在以后的生活中。血管对妊娠的适应受损是 FGR 的主要原因。缺氧条件
与 FGR 类似,也会改变子宫胎盘血管功能,减少胎儿生长。要了解
增加子宫动脉(UtA)血流量可预防缺氧依赖性受损的机制
子宫脉管系统和胎儿生长减少,我们建议使用光遗传学和化学遗传学技术
操纵活体动物的子宫血流。光遗传学是一种创新技术,其中基因
修饰后的细胞表达光激活的微生物视蛋白(例如盐视紫红质 [NpHR]),然后可以将其
在体内受光选择性刺激。化学遗传学利用修饰受体,例如毒蕈碱 M3
受体 (hM3Dq),可以被特定激动剂(例如去氯氯氮平 [DCZ])选择性激活。我们的
目标是开发新颖且可靠的小鼠模型,通过内皮或平滑肌特异性来预防 FGR
UtA 中的机制。为了实现这一目标,我们建议实现两个科学目标。在目标 1 中,在小鼠中
在平滑肌中表达 NpHR,我们将解决光刺激使 UtA 血管舒张的能力
在体内,增加 UtA 血流量并预防 FGR。目标 2 将确定内皮依赖性的效果
UtA 血管舒张通过 hM3Dq 的表达及其通过 DCZ 局部应用的选择性激活来实现。
微流体通道。目前增加体内 UtA 血流量的小鼠模型需要药理学
非组织特异性的激活,并且激活的时间无法控制。我们的光遗传学
化学遗传学模型将更好地控制血流操纵程度,增强
实验之间的可重复性、改进的刺激选择性以及测试时机的机会
的刺激。该项目将是第一个将光遗传学和化学遗传学应用于 UtA 血管舒张的项目
体内。重要的是,我们的建议可以为应用光遗传学和化学遗传学提供基础
体内其他血管床的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ramon Lorca其他文献
Ramon Lorca的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ramon Lorca', 18)}}的其他基金
Optogenetic control of vascular function during pregnancy
妊娠期血管功能的光遗传学控制
- 批准号:
10217625 - 财政年份:2021
- 资助金额:
$ 42.9万 - 项目类别:
Optogenetic control of vascular function during pregnancy
妊娠期血管功能的光遗传学控制
- 批准号:
10380024 - 财政年份:2021
- 资助金额:
$ 42.9万 - 项目类别:
Myometrial artery potassium channel activity in intrauterine growth restriction pregnancy
宫内生长受限妊娠中子宫肌动脉钾通道活性
- 批准号:
10308093 - 财政年份:2020
- 资助金额:
$ 42.9万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 42.9万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 42.9万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 42.9万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 42.9万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 42.9万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 42.9万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 42.9万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 42.9万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 42.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 42.9万 - 项目类别:
Operating Grants














{{item.name}}会员




