Improving response prediction to neoadjuvant therapy in pancreatic cancer

改善胰腺癌新辅助治疗的反应预测

基本信息

  • 批准号:
    10784272
  • 负责人:
  • 金额:
    $ 28.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-15 至 2028-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Localized pancreatic cancers (PC) are rising in incidence and this trend is expected to continue due to increased use of imaging modalities and focused programs on early cancer detection. Although potentially curable, long terms outcomes for localized PC remain poor. This is due to early micrometastatic spread and risk of systemic recurrence which has been reduced with use of systemic chemotherapy. In addition, use of chemotherapy prior to surgery lowers rates of positive margins and these collective observations have led to the adoption of neoadjuvant chemotherapy (NAC), i.e. prior to surgical resection, for majority of patients. NAC extends for multiple months (4-6 months) making real time assessment of response critical. However, this remains a big clinical challenge as pancreatic tumors don’t change much in size with NAC and use of tumor markers is marred by lack of specificity. Pathologic response to NAC on surgical resection specimens is highly prognostic, yet its molecular predictors remain poorly understood. Transcriptional subtypes of PC include classical and basal subtypes; the latter resembles triple negative breast cancer, displays chemotherapy resistance, and is enriched in metastatic disease. Single cell analysis of pancreatic tumors reveals extensive heterogeneity between classical and basal subtypes as well cells with co-expression of both features. In Aim 1, we use our institutional cohort of 174 patients who underwent pancreatic tumor resection after receiving NAC to identify predictors of pathologic treatment response using pre- treatment tumor specimens. We will investigate the classico-basal cell state heterogeneity using a validated multiplex immunofluorescence panel on initial diagnostic biopsies to understand differences in cell state between tumors which exhibit major response vs. no pathologic response. To identify novel predictive transcriptional states beyond classical-basal subtyping we will perform digital spatial profiling using the Nanostring GeoMx platform. In Aim 2, we propose investigating the utility of highly sensitive ctDNA assays to track changes in tumor burden and cell state during NAC. We expect differential ctDNA dynamics during NAC to predict outcomes. In addition using novel ctDNA based epigenetic assays we will assess whether tumoral cell state evolves during emergence of therapeutic resistance to more basal type. This work will lead to identification of novel predictive biomarkers which can help physicians identify high risk cases which are unlikely to respond to traditional NAC or identify early treatment resistance in real time and facilitate earlier switch to alternative chemotherapy or consideration of clinical trials leading to an improvement in outcomes for patients with localized PC. The proposed research will be performed at Dana-Farber Cancer Institute, under the guidance of Drs. Brian Wolpin and Andrew Aguirre. Both are recognized international leaders in PC biology. Importantly, this research strategy is one part of a comprehensive training program to support my transition to an independent research career in translational cancer biology. My scientific advisors (Drs. Myles Brown, Ryan Corcoran, and Eliezer Van Allen) are distinguished experts with experience highly relevant to the proposed research. My long-term goal is to lead an independent academic research group, focused on deciphering the novel biomarkers and mechanisms underlying therapy resistance in PC. The K08 award will provide pivotal protected time for continued mentored research and enable a successful transition to independence.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Harshabad Singh其他文献

Harshabad Singh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Genetic & Social Determinants of Health: Center for Admixture Science and Technology
遗传
  • 批准号:
    10818088
  • 财政年份:
    2023
  • 资助金额:
    $ 28.86万
  • 项目类别:
Admixture Mapping of Coronary Heart Disease and Associated Metabolomic Markers in African Americans
非裔美国人冠心病和相关代谢组标记物的混合图谱
  • 批准号:
    10571022
  • 财政年份:
    2023
  • 资助金额:
    $ 28.86万
  • 项目类别:
Whole Genome Sequencing and Admixture Analyses of Neuropathologic Traits in Diverse Cohorts in USA and Brazil
美国和巴西不同群体神经病理特征的全基因组测序和混合分析
  • 批准号:
    10590405
  • 财政年份:
    2023
  • 资助金额:
    $ 28.86万
  • 项目类别:
NSF Postdoctoral Fellowship in Biology: Coalescent Modeling of Sex Chromosome Evolution with Gene Flow and Analysis of Sexed-versus-Gendered Effects in Human Admixture
NSF 生物学博士后奖学金:性染色体进化与基因流的合并模型以及人类混合中性别与性别效应的分析
  • 批准号:
    2305910
  • 财政年份:
    2023
  • 资助金额:
    $ 28.86万
  • 项目类别:
    Fellowship Award
Admixture mapping of mosaic copy number alterations for identification of cancer drivers
用于识别癌症驱动因素的马赛克拷贝数改变的混合图谱
  • 批准号:
    10608931
  • 财政年份:
    2022
  • 资助金额:
    $ 28.86万
  • 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
  • 批准号:
    10656719
  • 财政年份:
    2022
  • 资助金额:
    $ 28.86万
  • 项目类别:
The role of admixture in human evolution
混合物在人类进化中的作用
  • 批准号:
    10683318
  • 财政年份:
    2022
  • 资助金额:
    $ 28.86万
  • 项目类别:
Genealogical ancestors, admixture, and population history
家谱祖先、混合和人口历史
  • 批准号:
    2116322
  • 财政年份:
    2021
  • 资助金额:
    $ 28.86万
  • 项目类别:
    Standard Grant
Genetic & Social Determinants of Health: Center for Admixture Science and Technology
遗传
  • 批准号:
    10307040
  • 财政年份:
    2021
  • 资助金额:
    $ 28.86万
  • 项目类别:
Admixture analysis of acute lymphoblastic leukemia in African American children: the ADMIRAL Study
非裔美国儿童急性淋巴细胞白血病的混合分析:ADMIRAL 研究
  • 批准号:
    10307680
  • 财政年份:
    2021
  • 资助金额:
    $ 28.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了