Diversity Supplement (Monica Quinones-Frias): Roles of Recycling Endosomes in Neuronal Extracellular Vesicle Cargo Traffic
多样性补充剂(Monica Quinones-Frias):回收内体在神经元细胞外囊泡货物运输中的作用
基本信息
- 批准号:10782371
- 负责人:
- 金额:$ 6.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-01
- 项目状态:未结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseBindingBiochemistryBrainCell membraneCellular MembraneChemicalsClathrinCommunicationComplexDiseaseDrosophila genusEndocytosisEndosomesFoundationsGeneticGoalsHumanKnowledgeLinkMediatingMembraneMembrane Protein TrafficMicroscopyMorphogenesisMorphologyNatureNervous SystemNervous System PhysiologyNeurogliaNeuronsParkinson DiseasePlayPresynaptic TerminalsProcessProteinsQuinonesRecyclingRegulationResearchResolutionRoleRouteSignal TransductionSortingSynapsesSynaptic MembranesSynaptic TransmissionTestingTherapeuticVesiclecell typeexperimental studyextracellular vesiclesin vivoinsightlive cell imagingnervous system disordernovelretrograde transporttooltraffickingvesicular release
项目摘要
PROJECT SUMMARY
The goal of this proposal is to understand how cellular membrane trafficking machinery controls the
packaging and release of extracellular vesicle (EV) cargoes from synapses in vivo. EVs are small
membrane-bound vesicles released by numerous cell types including neurons, carrying cargoes critical for
signaling and disease. However, we understand very little about how EV cargo traffic is spatially and
temporally regulated within the polarized and complex morphology of neurons. We have developed tools to
track and manipulate EV traffic at Drosophila presynaptic terminals in vivo, and discovered that flux of
cargoes through a plasma membrane-recycling endosome route determines whether they are locally sorted
for packaging and release in EVs, rather than depleted from synapses by retrograde transport. Recycling
endosomes have primarily been studied in non-neuronal cells, and very little is known about their lifetime,
functions, or dynamics at presynaptic terminals. We do know that recycling endosomes play critical roles in
signaling, neuronal morphogenesis, EV traffic, and synaptic transmission. Understanding and
therapeutically intervening in these important processes will require a deeper knowledge of the mechanisms
of neuronal recycling endosome function. In this proposal, we will elucidate the mechanisms of synaptic EV
cargo and recycling endosome traffic in vivo. To achieve these goals, we will use Drosophila genetics,
biochemistry, high-resolution microscopy, and live cell imaging. 1) We will determine the functions,
dynamics, and regulation of different types of synaptic recycling endosomes. To this end, we will develop
new tools and approaches to define and control functionally distinct recycling compartments at synapses.
Using these tools, we will test novel mechanistic hypotheses for how membrane traffic machinery sorts
cargoes at synaptic recycling compartments. 2) We will determine how EV cargo traffic depends on distinct
modes of synaptic endocytosis: clathrin-mediated endocytosis, which operates under low neuronal activity
and activity-dependent bulk endocytosis, which operates during intense neuronal activity. These
experiments will ascertain if EV fate is determined by different modes of internalization, how recycling
endosomes contribute to these functions, and provide new mechanisms to link activity, endosomal traffic,
and EV release. Given the conserved nature of synaptic membrane trafficking machinery, our findings and
tools will lay the foundation for new insights into EV traffic in many aspects of nervous system function,
including in human neurological disease.
项目摘要
该提案的目的是了解细胞膜运输机械如何控制
体内突触中的细胞外囊泡(EV)货物的包装和释放。电动汽车很小
膜结合的囊泡由包括神经元在内的多种细胞类型发布,携带货物至关重要
信号传导和疾病。但是,我们对电动汽车货物流量的空间方式几乎没有理解,
在神经元的极化和复杂形态中受到时间调节。我们已经开发了工具来
在体内果蝇前终端的轨道和操纵电动汽车交通,并发现
通过质膜回收的内体路线货物确定是否是本地分类的
用于在电动汽车中包装和释放,而不是通过逆行运输从突触中耗尽。回收
内体主要是在非神经元细胞中研究的,对它们的寿命知之甚少,
功能或突触前终端的动力学。我们确实知道回收内体在
信号传导,神经元形态发生,EV流量和突触传播。理解和
治疗上介入这些重要过程将需要更深入的了解机制
神经元回收的内体功能。在此提案中,我们将阐明突触EV的机制
体内货物和回收的内体流量。为了实现这些目标,我们将使用果蝇遗传学,
生物化学,高分辨率显微镜和活细胞成像。 1)我们将确定功能,
动力学和不同类型的突触回收内体的调节。为此,我们将发展
在突触下定义和控制功能不同的回收室的新工具和方法。
使用这些工具,我们将对膜交通机械的方式测试新型机械假设
突触回收室的货物。 2)我们将确定EV货物流量如何取决于不同的
突触性内吞作用的模式:网格蛋白介导的内吞作用,在低神经元活性下起作用
在激烈的神经元活性过程中起作用,依赖活性的大量内吞作用。这些
实验将确定是否通过不同的内在化模式确定EV命运,如何回收
内体为这些功能做出了贡献,并提供了链接活动,内体流量的新机制,
和电动汽车释放。鉴于突触膜贩运机械的保守性质,我们的发现和
工具将在神经系统功能的许多方面对EV流量的新见解奠定基础,
包括人类神经疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Avital Adah Rodal其他文献
Avital Adah Rodal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Avital Adah Rodal', 18)}}的其他基金
Abberior 3D-STED microscope for super-resolution imaging
用于超分辨率成像的 Abberior 3D-STED 显微镜
- 批准号:
10630881 - 财政年份:2023
- 资助金额:
$ 6.63万 - 项目类别:
Mechanisms and regulation of extracellular vesicle traffic in the nervous system
神经系统细胞外囊泡运输的机制和调节
- 批准号:
10063578 - 财政年份:2017
- 资助金额:
$ 6.63万 - 项目类别:
Mechanisms and regulation of extracellular vesicle traffic in the nervous system
神经系统细胞外囊泡运输的机制和调节
- 批准号:
10308698 - 财政年份:2017
- 资助金额:
$ 6.63万 - 项目类别:
Roles of Recycling Endosomes in Neuronal Extracellular Vesicle Cargo Traffic
回收内体在神经元细胞外囊泡货物运输中的作用
- 批准号:
10584339 - 财政年份:2017
- 资助金额:
$ 6.63万 - 项目类别:
Activity-dependent regulation of membrane traffic and growth signaling in neurons
神经元膜交通和生长信号的活动依赖性调节
- 批准号:
8354138 - 财政年份:2012
- 资助金额:
$ 6.63万 - 项目类别:
相似国自然基金
纤溶酶原结合蛋白Tetranectin通过抑制梭形菌的肠道内定植介导肠黏膜炎症相关疾病发展的机制研究
- 批准号:82370540
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
钙结合蛋白S100A4通过RAGE-PPARg调控肥大细胞代谢及其对过敏性疾病的作用
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
RNA结合蛋白进入线粒体的稳态调控机制及其在神经退行性疾病中的作用
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于皮肤荧光结合平行因子分析技术的老年性疾病早期预警方法研究
- 批准号:62205345
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多聚(ADP-核糖)聚合酶PARP调控疾病相关RNA结合蛋白的细胞和分子机理研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 6.63万 - 项目类别:
Sustained eIF5A hypusination at the core of brain metabolic dysfunction in TDP-43 proteinopathies
持续的 eIF5A 抑制是 TDP-43 蛋白病脑代谢功能障碍的核心
- 批准号:
10557547 - 财政年份:2023
- 资助金额:
$ 6.63万 - 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 6.63万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 6.63万 - 项目类别:
Regulation of paraspeckles by STAU1 in neurodegenerative disease
STAU1 在神经退行性疾病中对 paraspeckles 的调节
- 批准号:
10668027 - 财政年份:2023
- 资助金额:
$ 6.63万 - 项目类别: